|
Material Sciences 2020
Cu含量对Al-5Zn-2.6Mg-xCu合金组织和性能的影响
|
Abstract:
本文以添加0.24 wt.%~0.91 wt.% Cu含量的Al-5Zn-2.6Mg合金为研究对象,通过透射电镜(TEM)表征了Cu含量对晶内η'相的影响,通过扫描电镜(SEM)表征了杂质粗大第二相的尺寸与分布;105℃,120℃和135℃下的时效硬化曲线结果表明,随着Cu含量的增加,峰值时效时间提前。借助Arrhenius方程计算了三种时效温度下的析出速率和激活能,计算结果表明,随着Cu含量从0.24%增加到0.91%,时效反应速率k加快,且析出激活能Ea从25.7 kJ降低到15.0 kJ。通过室温拉伸、扫描电镜断口分析研究了Cu含量对强度和韧性的影响规律。随着Cu含量的增加,析出相分布密度明显增加。因此,120℃下峰值时效的抗拉强度提高10.2%;但是,粗大杂质第二相横向尺寸和数目也增多,促使变形过程中裂纹的萌生及在晶界扩展的倾向性增强,导致韧窝数量减少,断口形貌从塑性穿晶断裂转变至脆性沿晶断裂,合金延伸率下降3.8%。
In this paper, Al-5Zn-2.6Mg alloy with 0.24 wt.% - 0.91 wt.% Cu content was studied. The effect of Cu content on the η' phase in grain was characterized by transmission electron microscopy (TEM). The size and distribution of the impurity coarse second phase were characterized by scanning electron microscopy (SEM). The age hardening curves at 105?C, 120?C and 135?C showed that with the increase of Cu content, the peak aging time was advanced. The precipitation rate and activation energy at three aging temperatures were calculated by Arrhenius equation. The results showed that the aging reaction rate k increases with the increase of Cu content from 0.24% to 0.91%, and the precipitation activation energy Ea decreases from 25.7 kJ to 15.0 kJ. The influence of Cu content on the strength and toughness was studied by room temperature tensile test and fracture analysis by SEM. With the increase of Cu content, the distribution density of precipitates increases obviously. Therefore, the tensile strength of peak aging at 120?C is increased by 10.2%. However, the size and number of the coarse impurity second phase are also increased, which increases the tendency of crack initiation and propagation at the grain boundary, resulting in the decrease of dimple areas. The fracture morphology transforms from the plastic trans-granular fracture to brittle intergranular fracture, and the elongation of the alloy decreases by 3.8%.
[1] | Yang, W., Ji, S., Zhang, Q., et al. (2015) Investigation of Mechanical and Corrosion Properties of an Al-Zn-Mg-Cu Alloy under Various Ageing Conditions and Interface Analysis of η′ Precipitate. Materials & Design, 85, 752-761. https://doi.org/10.1016/j.matdes.2015.06.183 |
[2] | 张亮, 李茂军, 司乃潮. 复合热处理对7075铝合金组织和力学性能的影响[J]. 有色金属工程, 2019, 9(9): 93-98. |
[3] | 魏芳, 李金山, 周铁涛, 等. 用SAXS研究锂对7000系铝合金相变动力学的影响[J]. 航空学报, 2008, 29(4): 1037-1043. |
[4] | Dong, P., Chen, S. and Chen, K. (2019) Effects of Cu Content on Microstructure and Properties of Super-High-Strength Al-9.3Zn-2.4Mg-xCu-Zr Alloy. Journal of Alloys and Compounds, 788, 329-337. https://doi.org/10.1016/j.jallcom.2019.02.228 |
[5] | Wang, T., Yin, Z.M., Shen, K., et al. (2007) Single-Aging Characteristics of 7055 Aluminum Alloy. Transactions of Nonferrous Metals So-ciety of China, 17, 548-552. https://doi.org/10.1016/S1003-6326(07)60131-9 |
[6] | Shu, W.X., Hou, L.G., Zhang, C., et al. (2016) Tailored Mg and Cu Contents Affecting the Microstructures and Mechanical Properties of High-Strength Al-Zn-Mg-Cu Alloys. Materials Science and Engineering: A, 657, 269-283. https://doi.org/10.1016/j.msea.2016.01.039 |
[7] | 方旭. Cu对Al-Zn-Mg合金时效微观组织及性能影响研究[D]: [硕士学位论文]. 长沙: 中南大学, 2012. |
[8] | Chinh, N.Q., Lendvai, J., Ping, D.H., et al. (2004) The Effect of Cu on Mechanical and Precipitation Properties of Al-Zn-Mg Alloys. Journal of Alloys and Compounds, 378, 52-60. https://doi.org/10.1016/j.jallcom.2003.11.175 |
[9] | Khalfallah, A., Raho, A.A., Amzert, S., et al. (2019) Precipita-tion Kinetics of GP Zones, Metastable η’ Phase and Equilibrium η’ Phase in Al-5.46wt.%Zn-1.67wt.%Mg Alloy. Transactions of Nonferrous Metals Society of China, 29, 233-241. https://doi.org/10.1016/S1003-6326(19)64932-0 |
[10] | 魏芳, 赵中魁, 白朴存, 等. Li对7075铝合金组织转变动力学的影响[J]. 稀有金属材料与工程, 2004, 33(9): 945-948. |
[11] | Esmaeili, S., Lloyd, D.J. and Poole, W.J. (2003) Modeling of Precipitation Hardening for the Naturally Aged Al-Mg-Si-Cu Alloy AA6111. Acta Materialia, 51, 3467-3481. https://doi.org/10.1016/S1359-6454(03)00167-8 |
[12] | Liao, Y., Han, X., Zeng, M., et al. (2015) In-fluence of Cu on Microstructure and Tensile Properties of 7XXX Series Aluminum Alloy. Materials & Design, 66, 581-586. https://doi.org/10.1016/j.matdes.2014.05.003 |
[13] | 吴道祥, 林林, 陈焕良, 李丹丹. 固溶温度对7050铝合金组织及性能的影响[J]. 铝加工, 2018(2): 27-34. |
[14] | 林柳秋, 荣莉, 王为, 等. Mg和Cu在Al-Zn-Mg合金时效初期的Monte Carlo模拟[J]. 中国有色金属学报, 2012, 22(2): 453-459. |
[15] | Yao, D., Bai, Z., Qiu, F., et al. (2012) Effects of La on the Age Hardening Behavior and Precipitation Kinetics in the Cast Al-Cu Alloy. Journal of Alloys and Compounds, 540, 154-158. https://doi.org/10.1016/j.jallcom.2012.06.089 |