全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于GF-3 SAR影像分析喜马拉雅山热姆冰川运动特征
Characterizing the Surface Velocities of Zemu Glacier, Himalayas, Based on GF-3 SAR Images

DOI: 10.12677/GST.2020.82010, PP. 78-87

Keywords: 高分三号,热姆冰川,冰川运动,像素偏移追踪
GF-3
, Zemu Glacier, Glacier Motion, Pixel Offset Tracking

Full-Text   Cite this paper   Add to My Lib

Abstract:

高分三号(GF-3)是我国第一颗民用C波段多模式SAR卫星,已在微小地表形变探测中展现出一定潜力。为验证GF-3提取冰川流动等大尺度位移的可靠性,本文选取5景条带模式GF-3影像,采用像素偏移追踪技术(POT)测量了喜马拉雅山脉热姆冰川2018年的流速场。结果显示热姆冰川粒雪盆区域流动速度最大,约为1 m/d,而在消融区流速最高到达30 cm/d,从冰舌上端至末端流速逐渐变缓。结合研究区气候和地形资料,分析发现外界温度变化是控制热姆冰川流动快慢的主要因素,同时局部地区流速受地形影响。选取与GF-3邻近时期拍摄的5景Sentinel-1A影像为数据源,利用POT进行热姆冰川同时期运动速度估计,发现两者估计的流速差值标准差为±1.58 cm/d,表明GF-3影像可作为冰川运动信息提取的一种重要数据源。
GF-3 is the first civil C-band SAR satellite in China with multiple observation modes, which has shown a potential in detecting small surface displacements. In order to verify the reliability of GF-3 in extracting large-scale ground displacement such as glacier flow, this paper investigated the surface velocity of Zemu Glacier, Himalayan, with five strip-mode GF-3 images acquired in 2018 using Pixel Offset Tracking (POT) technique. The results show that the maximum flow velocity is about 1 m/d in the snow basin of Zemu Glacier, while the maximum velocity in the ablation area is about 30 cm/d. The flow velocity gradually slows down from the top to the end of the ice tongue. By correlating the flow velocities with the climatic and topographic data, it is suggested that the changes in external temperature primarily control the flow speed of Zemu Glacier, although the topography may also influence the velocities in some areas. As a validation, we also used five Sentinel-1A images, acquired near to acquisition time of GF-3 images, to estimate the velocity of Zemu Glacier. The standard deviation of velocity difference between the measurements from GF-3 and Sentinle-1A is about ±1.58 cm/d, indicating that GF-3 images could be an important data source in glacier motion retrieval.

References

[1]  Jacob, T., Wahr, J., Pfeffer, W., et al. (2012) Recent Contributions of Glaciers and Ice Caps to Sea Level Rise. Nature, 482, 514-518.
https://doi.org/10.1038/nature10847
[2]  Beniston, M. (2003) Climatic Change in Mountain Re-gions: A Review of Possible Impacts. Climatic Change, 59, 5-31.
https://doi.org/10.1023/A:1024458411589
[3]  刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1): 3-16.
[4]  姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11): 1203-1209.
[5]  姚檀栋, 余武生, 邬光剑, 等. 青藏高原及周边地区近期冰川状态失常与灾变风险[J]. 科学通报, 2019, 64(27): 2270-2782.
[6]  Ricgardson, S.D. and Reynolds, J.M. (2000) An Overview of Glacial Hazards in the Himalayas. Quaternary International, 65/66, 31-47.
https://doi.org/10.1016/S1040-6182(99)00035-X
[7]  谢自楚, 刘潮海. 冰川学导论[M]. 上海: 上海科学普及出版社, 2010: 17-18.
[8]  Dwyer, J.L. (1995) Mapping Tide-Water Glacier Dynamics in East Greenland Using Landsat Data. Journal of Glaciology, 41, 584-595.
https://doi.org/10.1017/S0022143000034900
[9]  Berthiera, E., Vandonb, H., Baratouxc, D., et al. (2005) Surface Motion of Moutain Glaciers Derived from Satellite Optical Imagery. Remote Sensing of Environment, 95, 14-28.
https://doi.org/10.1016/j.rse.2004.11.005
[10]  Goldstein, R.M., Engelhardt, H., Kamb, B., et al. (1993) Satellite Radar Interferometry for Monitoring Ice Sheet Motion: Application to an Antarctic Ice Stream. Science, 262, 1525-1530.
https://doi.org/10.1126/science.262.5139.1525
[11]  黄磊, 李震, 周建民, 等. SAR监测冰川变化研究进展[J]. 地球科学进展, 2014, 29(9): 985-994.
[12]  Zhou, J.M., Li, Z. and Guo, W.Q. (2013) Estimation and Analysis of the Surface Velocity Field for Mountain Glaciers in Muztag Ata Using Satellite SAR Data. Environmental Earth Sciences, 71, 3581-3592.
https://doi.org/10.1007/s12665-013-2749-5
[13]  Scherler, D., Leprince, S. and Strecker, M.R. (2008) Glacier Surface Velocities in Alpine Terrain from Optical Satellite Imagery: Accuracy Improvement and Quality Assessment. Remote Sensing of Environment, 112, 3806-3819.
https://doi.org/10.1016/j.rse.2008.05.018
[14]  Luckman, A., Quincey, D. and Bevan, S. (2007) The Potential of Satellite Radar Interfeometry and Feature Tracking for Monitoring Flow Rates of Himalayan Glaciers. Remote Sensing of Environment, 111, 172-181.
https://doi.org/10.1016/j.rse.2007.05.019
[15]  Kumar, V., Venkataramana, G. and Hogda, K.A. (2011) Glacier Surface Velocity Estimation Using SAR Interferometry Technique Applying Ascending and Descending Passes in Himalayas. International Journal of Applied Earth Observation and Geoinformation, 13, 545-551.
https://doi.org/10.1016/j.jag.2011.02.004
[16]  Joughin, I.R., Kwok, R. and Fahnestock, M.A. (1998) Interferometric Estimation of Three-Dimensional Ice-Flow Using Ascending and Descending Passes. IEEE Transactions on Geoscience and Remote Sensing, 36, 25-37.
https://doi.org/10.1109/36.655315
[17]  Gourmelen, N., Kim, S.W., Shepherd, A., et al. (2011) Ice Velocity Determined Using Conventional and Multiple—Aperture InSAR. Earth and Planetary Science Letters, 307, 156-160.
https://doi.org/10.1016/j.epsl.2011.04.026
[18]  Strozzi, T., Luckman, A., Murray, T., et al. (2002) Glacier Motion Estimation Using SAR Offset-Tracking Procedures. IEEE Transactions on Geoscience and Remote Sensing, 40, 2384-2391.
https://doi.org/10.1109/TGRS.2002.805079
[19]  刘国祥, 张波, 张瑞, 等. 联合卫星SAR和地基SAR的海螺沟冰川动态变化及次生滑坡灾害监测[J]. 武汉大学学报?信息科学版, 2019, 44(7): 980-995.
[20]  张晓博, 赵学胜, 葛大庆, 等. 利用新型C波段雷达卫星研究南伊内里切克冰川运动特征[J]. 武汉大学学报?信息科学版, 2019, 44(3): 429-435.
[21]  Tazio, S., Frank, P., Andreas, W., et al. (2017) Circum-Arctic Changes in the Flow of Glaciers and Ice Caps from Satellite SAR Data between the 1990s and 2017. Remote Sensing, 9, 947.
https://doi.org/10.3390/rs9090947
[22]  张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3): 269-277.
[23]  丁赤飚, 刘佳音, 雷斌, 等. 高分三号SAR卫星系统级几何定位精度初探[J]. 雷达学报, 2017, 6(1): 11-16.
[24]  杨劲松, 任林, 王隽. 高分三号卫星对海浪的首次定量遥感[J]. 海洋与湖沼, 2017, 48(2): 207-209.
[25]  Li, X.M., Zhang, T., Huang, B., et al. (2018) Capabilities of Chinese Gaofen-3 Synthetic Aperture Radar in Selected Topics for Coastal and Ocean Observations. Remote Sensing, 10, 1929.
https://doi.org/10.3390/rs10121929
[26]  Weizeng, S., Yexin, S. and Jian, S. (2017) Preliminary Assessment of Wind and Wave Retrieval from Chinese Gaofen-3 SAR Imagery. Sensors, 17, 1705.
https://doi.org/10.3390/s17081705
[27]  Wang, J.L., Yu, W.D., Deng, Y.K., et al. (2019) Demonstration of Time-Series InSAR Processing in Beijing Using a Small Stack of Gaofen-3 Differential Interferograms. Journal of Sensors, 2019, Article ID: 4204580.
https://doi.org/10.1155/2019/4204580
[28]  刘泽宇, 柳彬, 郭炜炜, 等. 高分三号NSC模式SAR图像舰船目标检测初探[J]. 雷达学报, 2017, 6(5): 45-54.
[29]  马建威, 孙亚勇, 陈德清, 等. 高分三号卫星在洪涝和滑坡灾害应急监测中的应用[J]. 航天器工程, 2017, 26(6): 161-166.
[30]  谷鑫志, 曾庆伟, 谌华, 等. 高分三号影像水体信息提取[J]. 遥感学报, 2019, 23(3): 555-565.
[31]  王群, 张蕴灵, 范景辉, 等. 利用高分三号影像监测依嘎冰川表面运动[J]. 武汉大学学报信息科学版, 2020, 45(3): 460-466.
[32]  Racoviteanu, A.E., Arnaud, Y., Williams, M.W., et al. (2015) Spatial Patterns in Glacier Characteristics and Area Changes from 1962 to 2006 in the Kanchenjunga-Sikkim Area, Eastern Himalaya. The Cryosphere, 9, 505-523.
https://doi.org/10.5194/tc-9-505-2015
[33]  Racoviteanu, A. and Williams, M.W. (2012) Decision Tree and Texture Analysis for Mapping Debris-Covered Glaciers in the Kangchenjunga Area, Eastern Himalaya. Remote Sensing Basel, 4, 3078-3109.
https://doi.org/10.3390/rs4103078
[34]  陈强, 罗容, 杨莹辉, 等. 利用SAR影像配准偏移量提取地表形变的方法与误差分析[J]. 测绘学报, 2015, 44(3): 301-308.
[35]  王群, 范景辉, 周伟, 等. DEM辅助偏移量跟踪技术的山地冰川运动监测研究[J]. 国土资源遥感, 2018, 30(3): 167-173.
[36]  王欣, 刘琼欣, 蒋亮虹, 等. 基于SAR影像的喜马拉雅山珠穆朗玛峰地区冰川运动速度特征及其影响因素分析[J]. 冰川冻土, 2015, 37(3): 570-579.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133