全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于移动端的银行卡识别方法
Bank Card Recognition Method Based on Mobile Terminal

DOI: 10.12677/CSA.2020.104076, PP. 732-740

Keywords: 银行卡识别,字符识别,分割字符,卷积神经网络
Bank Card Recognition
, Character Recognition, Character Segmentation, Convolutional Neural Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对用户在移动端进行银行卡卡号录入出错性高的问题,本文提出了一种基于移动端的银行卡识别方法。方法主要分为三步:银行卡图像获取及预处理,银行卡号数字字符分割,数字字符识别。其中图像预处理部分主要利用各类边缘检测算法、形态学操作进行处理,具体包括对银行卡进行投影矫正、获取卡号区域。获得数字区域后,再进行卡号提取、数字分割,最后使用卷积神经网络(CNN)训练模型,实现最终的数字识别。最后通过开发的基于Android客户端的App进行多次试验,验证了该方法能够较好地识别银行卡卡号。
In view of the problem that the user has a high error in entering the bank card number on the mo-bile terminal, this paper proposes a bank card recognition method based on the mobile terminal. The method is mainly divided into three steps: bank card image acquisition and preprocessing, bank card number digital character segmentation, digital character recognition. The image pre-processing part mainly uses various edge detection algorithms and morphological operations to process, including the projection correction of the bank card and the acquisition of the card number area. After obtaining the digital area, the card number is extracted and the number is segmented. Finally, the convolutional neural network (CNN) is used to train the model to realize the final number recognition. Finally, through the development of the app based on Android client for many times, it is verified that this method can identify the bank card number better.

References

[1]  卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述 [J]. 数据采集与处理, 2016, 31(1): 1-17.
[2]  张曦元. 基于OpenCV的智能车牌检测系统[J]. 电脑知识与技术: 学术版, 2019(5): 225-226.
[3]  Zhang, H., Zhao, K., Song, Y.-Z., et al. (2013) Text Extraction from Natural Scene Image: A Survey. Neurocomputing, 122, 310-323.
https://doi.org/10.1016/j.neucom.2013.05.037
[4]  朱怀中. 基于Android的手机OCR识别技术设计与实现[J]. 电子科技, 2012, 25(9): 45-48.
[5]  何朔. 移动支付的沿革与发展探究[J]. 中国信用卡, 2008(14): 47-53.
[6]  文章, 张欣, 周昌顺, 等. 一种基于Canny的边缘检测改进算法[J]. 通信技术, 2017, 50(10): 2236-2240.
[7]  游达章, 张建钢, 甘勇. 位图图像灰度化的方法及编程实现[J]. 广西科技大学学报, 2004, 15(1): 23-26.
[8]  丁怡心, 廖勇毅. 高斯模糊算法优化及实现[J]. 现代计算机(专业版), 2010(8): 76-77+100.
[9]  孙丰荣, 刘积仁. 快速霍夫变换算法[J]. 计算机学报, 2001, 24(10): 1102-1109.
[10]  王卜堂, 杨善林. 基于Gauss-Laplace算子的灰度图像边缘检测[J]. 计算机工程与应用, 2003, 39(26): 132-134.
[11]  王磊. 基于于MATLAB和LabVIEW的车牌识别系统[J]. 现代农业研究, 2018(12): 129-130.
[12]  洪洋, 葛振华, 王纪凯, 等. 基于深度卷积神经网络的验证码识别[C]//第19届中国系统仿真技术及其应用学术年会.
[13]  李翌昕, 邹亚君, 马尽文. 基于特征提取和机器学习的文档区块图像分类算法[J]. 信号处理, 2019, 35(5): 747-757.
[14]  来学伟. TensorFlow读取数据在简单图像识别中的应用[J]. 现代信息科技, 2019, 3(12): 98-99.
[15]  胡清华. 基于Android平台的软件开发方法研究[J]. 数码世界, 2018(1): 25.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133