全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

混凝土和混凝土–熔盐两种蓄热结构蓄热过程的对比分析
Comparative Analysis of Heat Storage Processes of Concrete and Concrete-Molten Salt Heat Storage Structures

DOI: 10.12677/SE.2020.101001, PP. 1-16

Keywords: 混凝土,熔盐,自然对流,数值模拟,蓄热量
Concrete
, Molten Salt, Natural Convection, Numerical Simulation, Heat Storage Capacity

Full-Text   Cite this paper   Add to My Lib

Abstract:

在环境污染和能源高效利用的双重背景下,为电蓄热装置设计高效的蓄热结构显得尤为重要。本文以混凝土和混凝土-熔盐两种蓄热结构为研究对象,通过数值模拟的方法,对两种蓄热结构的蓄热过程进行模拟分析。研究结果表明,当考虑熔盐在相变过程中的自然对流时,混凝土–熔盐的蓄热结构比混凝土蓄热结构在8小时后的蓄热量大。当相变层距加热面135 mm时,复合体8小时后的蓄热量相比混凝土蓄热体的蓄热量来说增加了32.31%。相关结论为电蓄热供暖系统的工程应用提供技术参考。
Under the dual background of environmental pollution and efficient energy utilization, it is par-ticularly important to design efficient heat storage structures for electric heat storage devices. In this paper, the heat storage process of concrete and concrete-molten salt heat storage struc-tures is simulated and analyzed by means of numerical simulation. The results show that when considering the natural convection of the molten salt in the phase change process, the heat storage structure of the concrete-molten salt is larger than that of the concrete after 8 hours. When the phase change layer is 135 mm away from the heating surface, the heat storage capaci-ty of the composite after 8 hours is increased by 32.31% compared with that of the concrete heat storage body. The relevant conclusions provide a technical reference for the engineering application of electric thermal storage heating systems.

References

[1]  Ding, N., Duan, J., Xue, S., et al. (2015) Overall Review of Peaking Power in China: Status Quo, Barriers and So-lutions. Renewable & Sustainable Energy Reviews, 42, 503-516.
https://doi.org/10.1016/j.rser.2014.10.041
[2]  Zhang, R., Jing, J., Tao, J., et al. (2013) Chemical Characteri-zation and Source Apportionment of PM2.5 in Beijing: Seasonal Perspective. Atmospheric Chemistry and Physics, 13, 7053-7074.
https://doi.org/10.5194/acp-13-7053-2013
[3]  Laning, D., Lehmannd, D., Fib, M., et al. (2009) Test Results of Concrete Thermal Energy Storage for Parabolic Trough Power Plants. ASME Journal of Solar Energy Engineering, 131, 410071-410076.
https://doi.org/10.1115/1.3197844
[4]  Laning, D., Steinmann, W., Fib, M., et al. (2008) Solid Media Thermal Storage Development and Analysis of Modular Storage Operation Concepts for Parabolic Trough Power Plants. ASME Journal of Solar Energy Engineering, 130, 11006.
https://doi.org/10.1115/1.2804625
[5]  Laning, D., Bahl, C., Bauer, T., et al. (2012) High-Temperature Solid-Media Thermal Energy Storage for Solar Thermal Power Plant. Proceedings of the IEEE, 100, 516-524.
https://doi.org/10.1109/JPROC.2011.2154290
[6]  朱教群, 李圆圆, 周卫兵, 等. 储热混凝上单元设计与储热模拟[J]. 节能, 2009, 28(1): 13-15.
[7]  朱进容, 董琼, 朱教群, 等. 高温混凝土储热模块充放热特性数值研究[J]. 武汉理工大学学报, 2013, 35(12): 1-5.
[8]  王立娟, 闫全英. 熔融盐在太阳能热发电中的应用及性能研究现状[J]. 材料科学, 2015, 5(3): 72-78.
[9]  彭达文, 鹿院卫, 于强, 等. 低熔点混合硝酸盐相变传热过程研究[J]. 工程热物理学报, 2018, 39(10): 154-160.
[10]  Cabeza, L.F., Ma-nuel, I., Cristian, S., et al. (2006) Experimentation with a Water Tank Including a PCM Module. Solar Energy Ma-terials & Solar Cells, 90, 1273-1282.
https://doi.org/10.1016/j.solmat.2005.08.002
[11]  Ren, N., Wu, Y.T., Ma, C.F., et al. (2014) Preparation and Thermal Properties of Quaternary Mixed Nitrate with Low Melting Point. Solar Energy Materials and Solar Cells, 127, 6-13.
https://doi.org/10.1016/j.solmat.2014.03.056
[12]  Voller, V.R. and Prakash, C. (1987) A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems. International Journal of Heat and Mass Transfer, 30, 1709-1719.
https://doi.org/10.1016/0017-9310(87)90317-6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133