|
Material Sciences 2020
石墨烯材料摩擦磨损特性的研究进展
|
Abstract:
石墨烯及其复合材料作为纳米添加剂,在润滑油中具有良好的减磨抗磨作用。本文从石墨烯的纳米摩擦学性能入手,阐述了其层间滑动摩擦和表面滑动摩擦的摩擦机理。详细介绍了石墨烯作为润滑油添加剂的分散性实验和摩擦性能实验。为石墨烯在润滑油领域的研究提供参考。
Graphene and its composites have good anti-friction effects in lubricating oil as nano additives. Based on the tribological properties of graphene, the mechanism of inter-layer sliding friction and surface sliding friction was described. The dispersion and tribological properties of graphene as a lubricant additive were introduced in detail. It provides reference for the research of graphene in lubricating oil field.
[1] | Balandin, A.A., Ghosh, S., Bao, W., et al. (2008) Superior Thermal Conductivity of Single-Layergraphene. Nano Letters, 8, 902-907. https://doi.org/10.1021/nl0731872 |
[2] | Lee, C., Wei, X., Kysar, J.W., et al. (2008) Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321, 385-388. https://doi.org/10.1126/science.1157996 |
[3] | Xu, L., Hu, Y.Z., Wang, H., et al. (2012) Molecular Dynamics Simulation of the Interlayer Sliding Behavior in Few-Layer Graphene. Carbon, 50, 1025-1032. https://doi.org/10.1016/j.carbon.2011.10.006 |
[4] | Guo Y F, Guo W L, Chen C F. (2007) Modifying Atomic-Scale Friction between Two Graphene Sheets: A Molecular-Force-Field Study. Physical Review B, 76, Article ID: 155429. https://doi.org/10.1103/PhysRevB.76.155429 |
[5] | Leven, I., Krepel, D., Shemesh, O., et al. (2013) Robust Superlubricity in Grapheme/h-BN Heterojunctions. Journal of Physical Chemistry Letters, 4, 115-120. https://doi.org/10.1021/jz301758c |
[6] | Cho, D.H., Wang, L., Kim, J.S., et al. (2013) Effect of Surface Morphology on Friction of Graphene on Various Substrates. Nanoscale, 5, 3063-3069. https://doi.org/10.1039/c3nr34181j |
[7] | Xu, L., Ma, T.B., Hu, Y.Z., et al. (2011) Vanishing Stick-Slip Friction in Few-Layer Graphenes: The Thickness Effect. Nanotechnology, 22, 1-6. https://doi.org/10.1088/0957-4484/22/28/285708 |
[8] | 蒲吉斌, 王立平, 薛群基. 石墨烯摩擦学及石墨烯基复合润滑材料的研究进展[J]. 摩擦学学报, 2014, 34(1): 93-112. |
[9] | Filleter, T., McChesney, J.L., Bostwick, A., et al. (2009) Friction and Dissipation in Epitaxial Graphene Films. Physical Review Letters, 102, 086-102. https://doi.org/10.1103/PhysRevLett.102.086102 |
[10] | Lee, C.G., Wei, X.D., Li, Q.Y., et al. (2009) Elastic and Frictional Properties of Graphene. Physica Status Solidi B, 246, 2562-2567. https://doi.org/10.1002/pssb.200982329 |
[11] | Li, Q.Y., Lee, C.G., Robert, W.C., et al. (2010) Substrate Effect on Thickness Dependent Friction on Graphene. Physica Status Solidi B, 247, 2909-2914. https://doi.org/10.1002/pssb.201000555 |
[12] | Lee, C.G., Li, Q.Y., William, K., et al. (2010) Frictional Character-istics of Atomically Thin Sheets. Science, 328, 76-80. https://doi.org/10.1126/science.1184167 |
[13] | Liu, P. and Zhang, Y.W. (2011) A theoretical Analysis of Frictional and Defect Characteristics of Graphene Probed by a Capped Single-Walled Carbon Nanotube. Carbon, 49, 3687-3697. https://doi.org/10.1016/j.carbon.2011.05.004 |
[14] | Reguzzoni, M., Fasolino, A., Molinari, E., et al. (2012) Friction by Shear Deformations in Multilayer Graphene. Journal of Physical Chemistry C, 116, 104-108. https://doi.org/10.1021/jp306929g |
[15] | 孔尚, 胡文敬, 李久盛, 等. 石墨烯在PAO基础油中的摩擦学性能[J]. 中国表面工程, 2019, 32(3): 162-169. |
[16] | 刘景富, 陈海洪, 夏正斌, 等. 纳米粒子的分散机理、方法及应用进展[J]. 合成材料老化与应用, 2010, 39(2): 36-40. |
[17] | 佟玉, 李宛鸿, 董嘉, 等. 石墨烯改性润滑油的悬浮分散特性和摩擦学性能[J]. 材料研究学报, 2019, 33(1): 59-63. |
[18] | 张丽秀, 李文旭, 魏晓奕, 吴玉厚. 超声分散对石墨烯润滑油分散稳定性影响的仿真与实验研究[J]. 机械科学与技术, 2019. |
[19] | 张斌, 陈体军, 等. 石墨烯纳米片超声分散的研究[J]. 功能材料, 2019, 8(50): 33-39. |
[20] | 仇磊, 陈鼎, 等. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(8): 2638-2643. |
[21] | Eswaraiah, V., Sankaranarayanan, V. and Ramaprabhu, S. (2011) Graphene Based Engine Oil Nanofluids Fortribological Applications. ACS Applied Materials Interfaces, 11, 4221-4227. https://doi.org/10.1021/am200851z |
[22] | Senatore, A., Agostino, V.D., Petrone, V., et al. (2013) Graphene Oxide Nanosheets as Effective Friction Modifier for Oil Lubricant: Materials, Methods and Tribological Results. Tribology, 2013, 5024-5031. https://doi.org/10.5402/2013/425809 |
[23] | Zhang, W., Zhou, M., Zhu, H.W., et al. (2011) Tribological Properties of Oleic Acid-Modified Graphene as Lubricant Oil Additives. Journal of Physics D: Applied Physics, 44, 205-303. https://doi.org/10.1088/0022-3727/44/20/205303 |
[24] | 付景国, 李思远, 等. 石墨烯作为润滑油添加剂在高温工况下的摩擦学性能[J]. 科学技术与工程, 2019, 19(11): 110-115. |
[25] | Rodenas, T., Luz, I., Prieto, G., et al. (2014) Metal-Organic Framework Nanosheets in Polymer Composite Materials for Gas Separation. Nature Materials, 14, 48-55. https://doi.org/10.1038/nmat4113 |
[26] | Song, L., et al. (2011) Frictional Behavior of Oxide Graphene Nanosheets as Water-Base Lubricant Additive. Applied Physics A-Materials Science & Processing, 4, 827-832. https://doi.org/10.1007/s00339-011-6636-1 |
[27] | 巴召文, 黄国威, 乔旦. 石墨烯/二硫化钼复合纳米添加剂的制备及摩擦学性能研究[J]. 摩擦学学报, 2019, 39(2): 140-149. |
[28] | Lin, J.S., Wang, L.W. and Chen, G.H. (2011) Modification of Graphene Platelets and Their Tribological Properties as a Lubricant Additive. Tribology Letters, 41, 209-215. https://doi.org/10.1007/s11249-010-9702-5 |
[29] | 冯晓辉. 复配纳米Cu粒子和石墨烯润滑油添加剂的摩擦学性能研究[D]: [硕士学位论文]. 大连: 大连海事大学, 2017. |