全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

石墨烯材料摩擦磨损特性的研究进展
Research Progress on the Friction and Wear Properties of Graphene Materials

DOI: 10.12677/MS.2020.104038, PP. 312-319

Keywords: 石墨烯,润滑油添加剂,摩擦磨损
Graphene
, Lubricating Oil Additive, Friction and Wear

Full-Text   Cite this paper   Add to My Lib

Abstract:

石墨烯及其复合材料作为纳米添加剂,在润滑油中具有良好的减磨抗磨作用。本文从石墨烯的纳米摩擦学性能入手,阐述了其层间滑动摩擦和表面滑动摩擦的摩擦机理。详细介绍了石墨烯作为润滑油添加剂的分散性实验和摩擦性能实验。为石墨烯在润滑油领域的研究提供参考。
Graphene and its composites have good anti-friction effects in lubricating oil as nano additives. Based on the tribological properties of graphene, the mechanism of inter-layer sliding friction and surface sliding friction was described. The dispersion and tribological properties of graphene as a lubricant additive were introduced in detail. It provides reference for the research of graphene in lubricating oil field.

References

[1]  Balandin, A.A., Ghosh, S., Bao, W., et al. (2008) Superior Thermal Conductivity of Single-Layergraphene. Nano Letters, 8, 902-907.
https://doi.org/10.1021/nl0731872
[2]  Lee, C., Wei, X., Kysar, J.W., et al. (2008) Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321, 385-388.
https://doi.org/10.1126/science.1157996
[3]  Xu, L., Hu, Y.Z., Wang, H., et al. (2012) Molecular Dynamics Simulation of the Interlayer Sliding Behavior in Few-Layer Graphene. Carbon, 50, 1025-1032.
https://doi.org/10.1016/j.carbon.2011.10.006
[4]  Guo Y F, Guo W L, Chen C F. (2007) Modifying Atomic-Scale Friction between Two Graphene Sheets: A Molecular-Force-Field Study. Physical Review B, 76, Article ID: 155429.
https://doi.org/10.1103/PhysRevB.76.155429
[5]  Leven, I., Krepel, D., Shemesh, O., et al. (2013) Robust Superlubricity in Grapheme/h-BN Heterojunctions. Journal of Physical Chemistry Letters, 4, 115-120.
https://doi.org/10.1021/jz301758c
[6]  Cho, D.H., Wang, L., Kim, J.S., et al. (2013) Effect of Surface Morphology on Friction of Graphene on Various Substrates. Nanoscale, 5, 3063-3069.
https://doi.org/10.1039/c3nr34181j
[7]  Xu, L., Ma, T.B., Hu, Y.Z., et al. (2011) Vanishing Stick-Slip Friction in Few-Layer Graphenes: The Thickness Effect. Nanotechnology, 22, 1-6.
https://doi.org/10.1088/0957-4484/22/28/285708
[8]  蒲吉斌, 王立平, 薛群基. 石墨烯摩擦学及石墨烯基复合润滑材料的研究进展[J]. 摩擦学学报, 2014, 34(1): 93-112.
[9]  Filleter, T., McChesney, J.L., Bostwick, A., et al. (2009) Friction and Dissipation in Epitaxial Graphene Films. Physical Review Letters, 102, 086-102.
https://doi.org/10.1103/PhysRevLett.102.086102
[10]  Lee, C.G., Wei, X.D., Li, Q.Y., et al. (2009) Elastic and Frictional Properties of Graphene. Physica Status Solidi B, 246, 2562-2567.
https://doi.org/10.1002/pssb.200982329
[11]  Li, Q.Y., Lee, C.G., Robert, W.C., et al. (2010) Substrate Effect on Thickness Dependent Friction on Graphene. Physica Status Solidi B, 247, 2909-2914.
https://doi.org/10.1002/pssb.201000555
[12]  Lee, C.G., Li, Q.Y., William, K., et al. (2010) Frictional Character-istics of Atomically Thin Sheets. Science, 328, 76-80.
https://doi.org/10.1126/science.1184167
[13]  Liu, P. and Zhang, Y.W. (2011) A theoretical Analysis of Frictional and Defect Characteristics of Graphene Probed by a Capped Single-Walled Carbon Nanotube. Carbon, 49, 3687-3697.
https://doi.org/10.1016/j.carbon.2011.05.004
[14]  Reguzzoni, M., Fasolino, A., Molinari, E., et al. (2012) Friction by Shear Deformations in Multilayer Graphene. Journal of Physical Chemistry C, 116, 104-108.
https://doi.org/10.1021/jp306929g
[15]  孔尚, 胡文敬, 李久盛, 等. 石墨烯在PAO基础油中的摩擦学性能[J]. 中国表面工程, 2019, 32(3): 162-169.
[16]  刘景富, 陈海洪, 夏正斌, 等. 纳米粒子的分散机理、方法及应用进展[J]. 合成材料老化与应用, 2010, 39(2): 36-40.
[17]  佟玉, 李宛鸿, 董嘉, 等. 石墨烯改性润滑油的悬浮分散特性和摩擦学性能[J]. 材料研究学报, 2019, 33(1): 59-63.
[18]  张丽秀, 李文旭, 魏晓奕, 吴玉厚. 超声分散对石墨烯润滑油分散稳定性影响的仿真与实验研究[J]. 机械科学与技术, 2019.
[19]  张斌, 陈体军, 等. 石墨烯纳米片超声分散的研究[J]. 功能材料, 2019, 8(50): 33-39.
[20]  仇磊, 陈鼎, 等. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(8): 2638-2643.
[21]  Eswaraiah, V., Sankaranarayanan, V. and Ramaprabhu, S. (2011) Graphene Based Engine Oil Nanofluids Fortribological Applications. ACS Applied Materials Interfaces, 11, 4221-4227.
https://doi.org/10.1021/am200851z
[22]  Senatore, A., Agostino, V.D., Petrone, V., et al. (2013) Graphene Oxide Nanosheets as Effective Friction Modifier for Oil Lubricant: Materials, Methods and Tribological Results. Tribology, 2013, 5024-5031.
https://doi.org/10.5402/2013/425809
[23]  Zhang, W., Zhou, M., Zhu, H.W., et al. (2011) Tribological Properties of Oleic Acid-Modified Graphene as Lubricant Oil Additives. Journal of Physics D: Applied Physics, 44, 205-303.
https://doi.org/10.1088/0022-3727/44/20/205303
[24]  付景国, 李思远, 等. 石墨烯作为润滑油添加剂在高温工况下的摩擦学性能[J]. 科学技术与工程, 2019, 19(11): 110-115.
[25]  Rodenas, T., Luz, I., Prieto, G., et al. (2014) Metal-Organic Framework Nanosheets in Polymer Composite Materials for Gas Separation. Nature Materials, 14, 48-55.
https://doi.org/10.1038/nmat4113
[26]  Song, L., et al. (2011) Frictional Behavior of Oxide Graphene Nanosheets as Water-Base Lubricant Additive. Applied Physics A-Materials Science & Processing, 4, 827-832.
https://doi.org/10.1007/s00339-011-6636-1
[27]  巴召文, 黄国威, 乔旦. 石墨烯/二硫化钼复合纳米添加剂的制备及摩擦学性能研究[J]. 摩擦学学报, 2019, 39(2): 140-149.
[28]  Lin, J.S., Wang, L.W. and Chen, G.H. (2011) Modification of Graphene Platelets and Their Tribological Properties as a Lubricant Additive. Tribology Letters, 41, 209-215.
https://doi.org/10.1007/s11249-010-9702-5
[29]  冯晓辉. 复配纳米Cu粒子和石墨烯润滑油添加剂的摩擦学性能研究[D]: [硕士学位论文]. 大连: 大连海事大学, 2017.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133