全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CoCl2-EMIC离子液体中无模板电沉积钴纳米线
Electrodeposition of Co Nanowires by Template-Free Method in CoCl2-EMIC Ionic Liquid

DOI: 10.12677/MS.2020.104036, PP. 296-303

Keywords: 钴纳米线,离子液体,电沉积
Co Nanowires
, Ionic Liquid, Electrodeposition

Full-Text   Cite this paper   Add to My Lib

Abstract:

在CoCl2-EMIC离子液体体系中,采用方波电位、计时电位和计时电流的方法,研究了不同电化学条件下工作电极上的反应特性,确定适合电沉积制备钴纳米线的条件。研究发现:在?0.65 V的电位下,可以获得钴纳米线,其在钨电极上电沉积初始过程遵循扩散控制瞬时成核模型和三维生长方式。同时探索了此种离子液体在空气中的稳定性,结果表明该离子液体在空气中可以稳定保持96小时,不会吸收水分,同时在空气条件下可以实现钴纳米线的电化学沉积。
The reaction characters on working electrode at different electrochemical conditions for the elec-trodeposition of Co nanowires in CoCl2-1-ethyl-3-methylimidazolium chloride (CoCl2-EMIC) ionic liquid were studied by using square wave voltammetry, chronoamperometry and chronopoten-tiometry methods. The appropriate condition for electrodeposition of Co nanowires was determined. It was founded that Co nanowires could be obtained under ?0.65 V and Co electrodeposition on W electrode at intial stage followed the instantaneous nucleation model controlled by difussion and 3D growth process. Meanwhile, the stability of this ionic liquid in the air was investigated and the results indicated that CoCl2-EMIC can be saved for 96 h without absorbing water. Moreover, the ionic liquids saved in the air were used for electrodeposition and Co nanowires can be obtained.

References

[1]  左志立, 李越星. Fe-Co-Ni纳米线阵列的制备及磁学性能研究[J]. 科技创新与应用, 2018(19): 113-115.
[2]  张璐, 张园园, 王宏智, 张卫国, 姚素薇. Ni纳米线阵列的电化学组装及磁性能研究[J]. 电镀与精饰, 2018(40): 1-4.
[3]  范瑞明,. 氧化铝模板法电沉积制备钴纳米线[J]. 电镀与环保, 2018(38): 47-49.
[4]  李成, 陈铭明, 金学军. 模板电沉积制备一维钴纳米材料的生长机制[J]. 热加工工艺, 2013(42): 67-69.
[5]  谭琳, 白慧萍, 陈雅倩, 杨光明, 卢旭晓, 杨云慧. 离子液体在一维纳米材料制备中的应用[J]. 材料导报, 2008(22): 83-86.
[6]  Liu, F., Deng, Y.D., Han, X.P., Hu, W.B. and Zhong, C. (2016) Electrodeposition of Metals and Alloys from Ionic Liquids. Journal of Alloys and Compounds, 654, 163-170.
https://doi.org/10.1016/j.jallcom.2015.09.137
[7]  邹卫红, 张颖, 阎子峰. 离子液体中电沉积法制备不同形貌材料的研究进展[J]. 石油化工, 2018(47): 1149-1157.
[8]  Zein El Abedin, S. and Endres, F. (2012) Free-Standing Aluminium Nanowire Architectures Made in an Ionic Liquid. ChemPhysChem, 13, 250-255.
https://doi.org/10.1002/cphc.201100639
[9]  Stepniowski, W.J., Moneta, M., Karczewski, K., Michalska-Domanska, M., Czujko, T., Mol, J.M.C. and Buijnsters, J.G. (2018) Fabrication of Copper Nanowires via Electrodeposition in Anodic Aluminum Oxide Templates Formed by Combined Hard Anodizing and Electrochemical Barrier Layer Thinning. Journal of Electroanalytical Chemistry, 809, 59-66.
https://doi.org/10.1016/j.jelechem.2017.12.052
[10]  Wang, L.-P., Chen, G., Shen, Q.-X., Li, G.-M., Guan, S.-Y. and Li, B. (2018) Direct Electrodeposition of Ionic Liquid-Based Template-Free SnCo Alloy Nanowires as an Anode for Li-Ion Batteries. International Journal of Minerals, Metallurgy, and Materials, 25, 1027-1034.
https://doi.org/10.1007/s12613-018-1653-0
[11]  Yang, J.-M., Hsieh, Y.-T., Zhuang, D.-X. and Sun, I.W. (2011) Direct Electrodeposition of FeCoZn Wire Arrays from a Zinc Chloride-Based Ionic Liquid. Electrochemistry Commu-nications, 13, 1178-1181.
https://doi.org/10.1016/j.elecom.2011.09.002
[12]  Scharifker, B. and Hills, G. (1983) Theoretical and Experimental Studies of Multiple Nucleation. Electrochimica Acta, 28, 879-889.
https://doi.org/10.1016/0013-4686(83)85163-9
[13]  Hsieh, Y.-T., Lai, M.-C., Huang, H.-L. and Sun, I.W. (2014) Speciation of Cobalt-Chloride-Based Ionic Liquids and Electrodeposition of Co Wires. Electrochimica Acta, 117, 217-223.
https://doi.org/10.1016/j.electacta.2013.11.120

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133