|
Material Sciences 2020
ZnO/层状g-C3N4的制备及其正丁醇气敏性能研究
|
Abstract:
本文利用水热法合成了不同形貌的ZnO/g-C3N4复合材料。对样品进行了XRD和SEM表征,并探索了其气敏性能。结果表明,线状ZnO成功地负载在了g-C3N4的表面。其中,ZnO/层状g-C3N4的最佳工作温度比纯ZnO低90℃,在240℃时,对正丁醇具有良好的选择性和稳定性,在50 ppm正丁醇气体中灵敏度达到20.9,表明g-C3N4不仅降低了ZnO的工作温度,同时优化了其气敏性能。
ZnO/g-C3N4 composites with different morphologies were synthesized by a hydrothermal method. The structure and morphology of the samples were characterized by XRD and SEM. And the gas sensitivity of samples was tested. The results show that linear ZnO successfully loads on the surface of g-C3N4. The optimal operating temperature of ZnO/layered g-C3N4 is 90?C lower than that of pure ZnO. At its optimal working temperature 240?C, it has good selectivity and stability for n-butanol, and the response to 50 ppm n-butanol reaches 20.9. The results indicate that g-C3N4 not only reduces the working temperature of ZnO, but also optimizes its gas sensitivity.
[1] | Naeem, F., Naeem, S., Zhao, Z., Shu, G.G., Zhang, J., Mei, Y.M. and Huang, G.S. (2020) Atomic Layer Deposition Synthesized ZnO Nanomembranes: A Facile Route towards Stable Supercapacitor Electrode for High Capacitance. Journal of Power Sources, 451, Article ID: 227740. https://doi.org/10.1016/j.jpowsour.2020.227740 |
[2] | Fahimi, Z. and Moradlou, O. (2020) Fabrication of ZnO@C Foam: A Flexible Free-Standing Electrode for Energy Storage De-vices. Materials & Design, 189, Article ID: 108525. https://doi.org/10.1016/j.matdes.2020.108525 |
[3] | Anandhi, P., Jawahar Senthil Kumar, V. and Harikrishnan, S. (2019) Preparation and Enhanced Capacitive Behavior of Ni-ZnO Nanocomposite as Electrode for Supercapacitor. Materials Today: Proceedings, 9, 361-370. https://doi.org/10.1016/j.matpr.2019.02.165 |
[4] | Alev, O., Sar?ca, N., ?zdemir, O., Arslan, L.C., Büyükk?se, S. and ?ztürk, Z.Z. (2020) Cu-Doped ZnO Nanorods Based QCM Sensor for Hazardous Gases. Journal of Alloys and Compounds, 826, Article ID: 154177. https://doi.org/10.1016/j.jallcom.2020.154177 |
[5] | Chao, J.F., Chen, Y.H., Xing, S.M., Zhang, D.L. and Shen, W.L. (2019) Facile Fabrication of ZnO/C Nanoporous Fibers and ZnO Hollow Spheres for High Performance Gas Sensor. Sensors and Actuators B: Chemical, 298, Article ID: 126927. https://doi.org/10.1016/j.snb.2019.126927 |
[6] | Serrà, A., Pip, P., Gómez, E. and Philippe, L. (2020) Efficient Magnetic Hybrid ZnO-Based Photocatalysts for Visible-Light-Driven Removal of Toxic Cyanobacteria Blooms and Cyanotoxins. Applied Catalysis B: Environmental, 268, Article ID: 118745. https://doi.org/10.1016/j.apcatb.2020.118745 |
[7] | Dhandapani, P., Prakash, A.A., AlSalhi, M.S., Maruthamuthu, S., Devanesan, S. and Rajasekar, A. (2020) Ureolytic Bacteria Mediated Synthesis of Hairy ZnO Nanostructure as Photocatalyst for Decolorization of Dyes. Materials Chemistry and Physics, 243, Article ID: 122619. https://doi.org/10.1016/j.matchemphys.2020.122619 |
[8] | Ganesh, M., Lee, S.G., Jayaprakash, J., Mohankumar, M. and Jang, H.T. (2019) Hydnocarpus Alpina Wt Extract Mediated Green Synthesis of ZnO Nanoparticle and Screening of Its Anti-Microbial, Free Radical Scavenging, and Photocatalytic Activity. Biocatalysis and Agricultural Biotechnology, 19, Article ID: 101129. https://doi.org/10.1016/j.bcab.2019.101129 |
[9] | Velsankar, K., Sudhahar, S., Maheshwaran, G. and Krishna Kumar, M. (2019) Effect of Biosynthesis of ZnO Nanoparticles via Cucurbita Seed Extract on Culex tritaeniorhynchus Mosquito Larvae with Its Biological Applications. Journal of Photochemistry and Photobiology B: Biology, 200, Article ID: 111650. https://doi.org/10.1016/j.jphotobiol.2019.111650 |
[10] | Wang, X.W., Li, Q.C., Zhou, C.X., Cao, Z.Q. and Zhang, R. (2019) ZnO Rod/Reduced Graphene Oxide Sensitized by α-Fe2O3 Nanoparticles for Effective Visible-Light Photoreduction of CO2. Journal of Colloid and Interface Science, 554, 335-343. https://doi.org/10.1016/j.jcis.2019.07.014 |
[11] | Ali, M., Amrane, N. and Tit, N. (2020) Relevance of Defects in ZnO Nanotubes for Selective Adsorption of H2S and CO2 Gas Molecules: Ab-Initio Investigation. Results in Physics, 16, Article ID: 102907. https://doi.org/10.1016/j.rinp.2019.102907 |
[12] | Chen, J.R., Jia, Y., Wang, W.Z., Fu, G.L., Shi, H.L. and Liang, Y.J. (2020) Morphology Selective Electrodeposition of Cu2O Microcrystals on ZnO Nanotube Arrays as Efficient Visible-Light-Driven Photo-Electrode. International Journal of Hydrogen Energy, 45, 8649-8658. https://doi.org/10.1016/j.ijhydene.2020.01.114 |
[13] | Mohamed, H.H., Hammami, I., Akhtar, S. and Youssef, T.E. (2019) Highly Efficient Cu-Phthalocyanine-Sensitized ZnO Hollow Spheres for Photocatalytic and Antimicrobial Applications. Composites Part B: Engineering, 176, Article ID: 107314. https://doi.org/10.1016/j.compositesb.2019.107314 |
[14] | Luo, J.H., Zhang, K., Cheng, M.L., Gu, M.M. and Sun, X.K. (2020) MoS2 Spheres Decorated on Hollow Porous ZnO Microspheres with Strong Wideband Microwave Ab-sorption. Chemical Engineering Journal, 380, Article ID: 122625. https://doi.org/10.1016/j.cej.2019.122625 |
[15] | Ballesteros-Balbuena, M., Roa-Morales, G., Vilchis-Nestor, A.R., Castrejón-Sánchez, V.H., Vigueras-Santiago, E., Balderas-Hernández, P., Barrera-Díaz, C., Camacho-López, S. and Camacho-López, M. (2020) Photocatalytic Urchin-Like and Needle-Like ZnO Nanostructures Synthetized by Thermal Oxidation. Materials Chemistry and Physics, 244, Article ID: 122703. https://doi.org/10.1016/j.matchemphys.2020.122703 |
[16] | Wang, H., Li, Q., Zheng, X.K., Wang, C., Ma, J.W., Yan, B.B., Du, Z.N., Li, M.Y., Wang, W.J. and Fan, H.Q. (2020) 3D Porous Flower-Like ZnO Microstructures Loaded by Large-Size Ag and Their Ultrahigh Sensitivity to Ethanol. Journal of Alloys and Compounds, 829, Article ID: 154453. https://doi.org/10.1016/j.jallcom.2020.154453 |
[17] | Zhang, Y.H., Li, Y.L., Gong, F.L., Xie, K.F., Liu, M., Zhang, H.L. and Fang, S.M. (2020) Al Doped Narcissus-Like ZnO for Enhanced NO2 Sensing Performance: An Experimental and DFT Investigation. Sensors and Actuators B: Chemical, 305, Article ID: 127489. https://doi.org/10.1016/j.snb.2019.127489 |
[18] | Chu, H.O., Wang, Q., Shi, Y.J., Song, S.G., Liu, W.G., Zhou, S., Gibson, D., Alajlani, Y. and Li, C. (2020) Structural, Optical Properties and Optical Modelling of Hydrothermal Chemical Growth Derived ZnO Nanowires. Transactions of Nonferrous Metals Society of China, 30, 191-199. https://doi.org/10.1016/S1003-6326(19)65191-5 |
[19] | Alam, S., Sahu, T.K., Gogoi, D., Peela, N.R. and Qureshi, M. (2020) Bio-Template Assisted Hierarchical ZnO Superstructures Coupled with Graphene Quantum Dots for En-hanced Water Oxidation Kinetics. Solar Energy, 199, 39-46. https://doi.org/10.1016/j.solener.2020.02.015 |
[20] | Puneetha, J., Nagaraju, K., Nagaraju, G. and Rathna, A. (2020) Visible Light Active ZnO Nanostructures Prepared by Simple Co-Precipitation Method. Photonics and Nanostruc-tures—Fundamentals and Applications, 39, Article ID: 100781. https://doi.org/10.1016/j.photonics.2020.100781 |
[21] | Alp, E., Araz, E.C., Bulu?, A.F., Güner, Y., De?er, Y., E?gin, H., Dermenci, K.B., Kür?at Kazmanl?, M., Turan, S. and Gen?, A. (2018) Mesoporous Nanocrystalline ZnO Microspheres by Ethylene Glycol Mediated Thermal Decomposition. Advanced Powder Technology, 29, 3455-3461. https://doi.org/10.1016/j.apt.2018.09.028 |
[22] | Yang, P., Wang, J.C., Yue, G.Z., Yang, R.Z., Zhao, P.X., Yang, L.J., Zhao, X.C. and Astruc, D. (2020) Constructing Mesoporous g-C3N4/ZnO Nanosheets Catalyst for Enhanced Visi-ble-Light Driven Photocatalytic Activity. Journal of Photochemistry and Photobiology A: Chemistry, 388, Article ID: 112169. https://doi.org/10.1016/j.jphotochem.2019.112169 |
[23] | Zhou, D.F. and Qiu, C.Q. (2019) Study on the Effect of Co Doping Concentration on Optical Properties of g-C3N4. Chemical Physics Letters, 728, 70-73. https://doi.org/10.1016/j.cplett.2019.04.060 |
[24] | Tian, N., Huang, H.W., Wang, S.B., Zhang, T.R., Du, X. and Zhang, Y.H. (2020) Facet-Charge-Induced Coupling Dependent Interfacial Photocharge Separation: A Case of Bi-OI/g-C3N4 p-n Junction. Applied Catalysis B: Environmental, 267, Article ID: 118697. https://doi.org/10.1016/j.apcatb.2020.118697 |
[25] | Gao, Z.Q., Chen, K.Y., Wang, L., Bai, B., Liu, H. and Wang, Q.Z. (2019) Aminated Flower-Like ZnIn2S4 Coupled with Benzoic Acid Modified g-C3N4 Nanosheets via Covalent Bonds for Ameliorated Photocatalytic Hydrogen Generation. Applied Catalysis B: Environmental, 268, Article ID: 118462. https://doi.org/10.1016/j.apcatb.2019.118462 |
[26] | Xue, Z., Zhang, X.Y., Qin, J.Q. and Liu, R.P. (2020) Constructing MoS2/g-C3N4 Heterojunction with Enhanced Oxygen Evolution Reaction Activity: A Theoretical Insight. Applied Surface Science, 510, Article ID: 145489. https://doi.org/10.1016/j.apsusc.2020.145489 |
[27] | Zhao, S.S., Chen, S., Yu, H.T. and Quan, X. (2012) g-C3N4/TiO2 Hybrid Photocatalyst with Wide Absorption Wavelength Range and Effective Photogenerated Charge Separation. Separation and Purification Technology, 99, 50-54. https://doi.org/10.1016/j.seppur.2012.08.024 |
[28] | Wu, M., Yan, J.M., Zhang, X.W. and Zhao, M. (2015) Synthe-sis of g-C3N4 with Heating Acetic Acid Treated Melamine and Its Photocatalytic Activity for Hydrogen Evolution. Ap-plied Surface Science, 354, 196-200. https://doi.org/10.1016/j.apsusc.2015.01.132 |
[29] | Yang, Y.L., Mao, B.D., Gong, G., Li, D., Liu, Y.H., Cao, W.J., Xing, L., Zeng, J., Shi, W.D. and Yuan, S.Q. (2019) In-Situ Growth of Zn-AgIn5S8 Quantum Dots on g-C3N4 towards 0D/2D Heterostructured Photocatalysts with Enhanced Hydrogen Pro-duction. International Journal of Hydrogen Energy, 44, 15882-15891. https://doi.org/10.1016/j.ijhydene.2019.01.102 |
[30] | Ma, J., Tao, X.Y., Zhou, S.X., Song, X.Z., Guo, L., Wang, Y., Zhu, Y.B., Guo, L.T., Liu, Z.S., Fan, H.L. and Wei, X.Y. (2019) Facile Fabrication of Ag/PANI/g-C3N4 Composite with Enhanced Electrochemical Performance as Supercapacitor Electrode. Journal of Electroanalytical Chemistry, 835, 346-353. https://doi.org/10.1016/j.jelechem.2018.12.025 |
[31] | Xiao, Y.T., Tian, G.H., Li W., Xie, Y., Jiang, B.J., Tian, C.G., Zhao D.Y. and Fu, H.G. (2019) Molecule Self-Assembly Synthesis of Porous Few-Layer Carbon Nitride for Highly Efficient Photoredox Catalysis. Journal of the American Chemical Society, 141, 2508-2515. https://doi.org/10.1021/jacs.8b12428 |
[32] | Kang, J., Jin, C.Y., Li, Z.L., Wang, M., Chen, Z.Q. and Wang, Y.Z. (2020) Dual Z-Scheme MoS2/g-C3N4/Bi24O31Cl10 Ternary Heterojunction Photocatalysts for Enhanced Visible-Light Photodegradation of Antibiotic. Journal of Alloys and Compounds, 825, Article ID: 153975. https://doi.org/10.1016/j.jallcom.2020.153975 |
[33] | Wang, H.T., Bai, J.H., Dai, M., Liu, K.P., Liu, Y.Y., Zhou, L.S., Liu, F.M., Liu, F.M., Gao, Y., Yan, X. and Lu, G.Y. (2020) Visible Light Activated Excellent NO2 Sensing Based on 2D/2D ZnO/g-C3N4 Heterojunction Composites. Sensors and Actuators B: Chemical, 304, Article ID: 127287. https://doi.org/10.1016/j.snb.2019.127287 |
[34] | Zhai, J.L., Wang, T., Wang, C. and Liu, D.C. (2018) UV-Light-Assisted Ethanol Sensing Characteristics of g-C3N4/ZnO Composites at Room Temperature. Applied Surface Science, 441, 317-323. https://doi.org/10.1016/j.apsusc.2018.02.026 |
[35] | Naeem, F., Naeem, S., Zhao, Z., Shu, G.G., Zhang, J., Mei, Y.M. and Huang, G.S. (2020) Atomic Layer Deposition Synthesized ZnO Nanomembranes: A Facile Route towards Stable Supercapacitor Electrode for High Capacitance. Journal of Power Sources, 451, Article ID: 227740. https://doi.org/10.1016/j.jpowsour.2020.227740 |
[36] | Fahimi, Z. and Moradlou, O. (2020) Fabrication of ZnO@C Foam: A Flexible Free-Standing Electrode for Energy Storage De-vices. Materials & Design, 189, Article ID: 108525. https://doi.org/10.1016/j.matdes.2020.108525 |
[37] | Anandhi, P., Jawahar Senthil Kumar, V. and Harikrishnan, S. (2019) Preparation and Enhanced Capacitive Behavior of Ni-ZnO Nanocomposite as Electrode for Supercapacitor. Materials Today: Proceedings, 9, 361-370. https://doi.org/10.1016/j.matpr.2019.02.165 |
[38] | Alev, O., Sar?ca, N., ?zdemir, O., Arslan, L.C., Büyükk?se, S. and ?ztürk, Z.Z. (2020) Cu-Doped ZnO Nanorods Based QCM Sensor for Hazardous Gases. Journal of Alloys and Compounds, 826, Article ID: 154177. https://doi.org/10.1016/j.jallcom.2020.154177 |
[39] | Chao, J.F., Chen, Y.H., Xing, S.M., Zhang, D.L. and Shen, W.L. (2019) Facile Fabrication of ZnO/C Nanoporous Fibers and ZnO Hollow Spheres for High Performance Gas Sensor. Sensors and Actuators B: Chemical, 298, Article ID: 126927. https://doi.org/10.1016/j.snb.2019.126927 |
[40] | Serrà, A., Pip, P., Gómez, E. and Philippe, L. (2020) Efficient Magnetic Hybrid ZnO-Based Photocatalysts for Visible-Light-Driven Removal of Toxic Cyanobacteria Blooms and Cyanotoxins. Applied Catalysis B: Environmental, 268, Article ID: 118745. https://doi.org/10.1016/j.apcatb.2020.118745 |
[41] | Dhandapani, P., Prakash, A.A., AlSalhi, M.S., Maruthamuthu, S., Devanesan, S. and Rajasekar, A. (2020) Ureolytic Bacteria Mediated Synthesis of Hairy ZnO Nanostructure as Photocatalyst for Decolorization of Dyes. Materials Chemistry and Physics, 243, Article ID: 122619. https://doi.org/10.1016/j.matchemphys.2020.122619 |
[42] | Ganesh, M., Lee, S.G., Jayaprakash, J., Mohankumar, M. and Jang, H.T. (2019) Hydnocarpus Alpina Wt Extract Mediated Green Synthesis of ZnO Nanoparticle and Screening of Its Anti-Microbial, Free Radical Scavenging, and Photocatalytic Activity. Biocatalysis and Agricultural Biotechnology, 19, Article ID: 101129. https://doi.org/10.1016/j.bcab.2019.101129 |
[43] | Velsankar, K., Sudhahar, S., Maheshwaran, G. and Krishna Kumar, M. (2019) Effect of Biosynthesis of ZnO Nanoparticles via Cucurbita Seed Extract on Culex tritaeniorhynchus Mosquito Larvae with Its Biological Applications. Journal of Photochemistry and Photobiology B: Biology, 200, Article ID: 111650. https://doi.org/10.1016/j.jphotobiol.2019.111650 |
[44] | Wang, X.W., Li, Q.C., Zhou, C.X., Cao, Z.Q. and Zhang, R. (2019) ZnO Rod/Reduced Graphene Oxide Sensitized by α-Fe2O3 Nanoparticles for Effective Visible-Light Photoreduction of CO2. Journal of Colloid and Interface Science, 554, 335-343. https://doi.org/10.1016/j.jcis.2019.07.014 |
[45] | Ali, M., Amrane, N. and Tit, N. (2020) Relevance of Defects in ZnO Nanotubes for Selective Adsorption of H2S and CO2 Gas Molecules: Ab-Initio Investigation. Results in Physics, 16, Article ID: 102907. https://doi.org/10.1016/j.rinp.2019.102907 |
[46] | Chen, J.R., Jia, Y., Wang, W.Z., Fu, G.L., Shi, H.L. and Liang, Y.J. (2020) Morphology Selective Electrodeposition of Cu2O Microcrystals on ZnO Nanotube Arrays as Efficient Visible-Light-Driven Photo-Electrode. International Journal of Hydrogen Energy, 45, 8649-8658. https://doi.org/10.1016/j.ijhydene.2020.01.114 |
[47] | Mohamed, H.H., Hammami, I., Akhtar, S. and Youssef, T.E. (2019) Highly Efficient Cu-Phthalocyanine-Sensitized ZnO Hollow Spheres for Photocatalytic and Antimicrobial Applications. Composites Part B: Engineering, 176, Article ID: 107314. https://doi.org/10.1016/j.compositesb.2019.107314 |
[48] | Luo, J.H., Zhang, K., Cheng, M.L., Gu, M.M. and Sun, X.K. (2020) MoS2 Spheres Decorated on Hollow Porous ZnO Microspheres with Strong Wideband Microwave Ab-sorption. Chemical Engineering Journal, 380, Article ID: 122625. https://doi.org/10.1016/j.cej.2019.122625 |
[49] | Ballesteros-Balbuena, M., Roa-Morales, G., Vilchis-Nestor, A.R., Castrejón-Sánchez, V.H., Vigueras-Santiago, E., Balderas-Hernández, P., Barrera-Díaz, C., Camacho-López, S. and Camacho-López, M. (2020) Photocatalytic Urchin-Like and Needle-Like ZnO Nanostructures Synthetized by Thermal Oxidation. Materials Chemistry and Physics, 244, Article ID: 122703. https://doi.org/10.1016/j.matchemphys.2020.122703 |
[50] | Wang, H., Li, Q., Zheng, X.K., Wang, C., Ma, J.W., Yan, B.B., Du, Z.N., Li, M.Y., Wang, W.J. and Fan, H.Q. (2020) 3D Porous Flower-Like ZnO Microstructures Loaded by Large-Size Ag and Their Ultrahigh Sensitivity to Ethanol. Journal of Alloys and Compounds, 829, Article ID: 154453. https://doi.org/10.1016/j.jallcom.2020.154453 |
[51] | Zhang, Y.H., Li, Y.L., Gong, F.L., Xie, K.F., Liu, M., Zhang, H.L. and Fang, S.M. (2020) Al Doped Narcissus-Like ZnO for Enhanced NO2 Sensing Performance: An Experimental and DFT Investigation. Sensors and Actuators B: Chemical, 305, Article ID: 127489. https://doi.org/10.1016/j.snb.2019.127489 |
[52] | Chu, H.O., Wang, Q., Shi, Y.J., Song, S.G., Liu, W.G., Zhou, S., Gibson, D., Alajlani, Y. and Li, C. (2020) Structural, Optical Properties and Optical Modelling of Hydrothermal Chemical Growth Derived ZnO Nanowires. Transactions of Nonferrous Metals Society of China, 30, 191-199. https://doi.org/10.1016/S1003-6326(19)65191-5 |
[53] | Alam, S., Sahu, T.K., Gogoi, D., Peela, N.R. and Qureshi, M. (2020) Bio-Template Assisted Hierarchical ZnO Superstructures Coupled with Graphene Quantum Dots for En-hanced Water Oxidation Kinetics. Solar Energy, 199, 39-46. https://doi.org/10.1016/j.solener.2020.02.015 |
[54] | Puneetha, J., Nagaraju, K., Nagaraju, G. and Rathna, A. (2020) Visible Light Active ZnO Nanostructures Prepared by Simple Co-Precipitation Method. Photonics and Nanostruc-tures—Fundamentals and Applications, 39, Article ID: 100781. https://doi.org/10.1016/j.photonics.2020.100781 |
[55] | Alp, E., Araz, E.C., Bulu?, A.F., Güner, Y., De?er, Y., E?gin, H., Dermenci, K.B., Kür?at Kazmanl?, M., Turan, S. and Gen?, A. (2018) Mesoporous Nanocrystalline ZnO Microspheres by Ethylene Glycol Mediated Thermal Decomposition. Advanced Powder Technology, 29, 3455-3461. https://doi.org/10.1016/j.apt.2018.09.028 |
[56] | Yang, P., Wang, J.C., Yue, G.Z., Yang, R.Z., Zhao, P.X., Yang, L.J., Zhao, X.C. and Astruc, D. (2020) Constructing Mesoporous g-C3N4/ZnO Nanosheets Catalyst for Enhanced Visi-ble-Light Driven Photocatalytic Activity. Journal of Photochemistry and Photobiology A: Chemistry, 388, Article ID: 112169. https://doi.org/10.1016/j.jphotochem.2019.112169 |
[57] | Zhou, D.F. and Qiu, C.Q. (2019) Study on the Effect of Co Doping Concentration on Optical Properties of g-C3N4. Chemical Physics Letters, 728, 70-73. https://doi.org/10.1016/j.cplett.2019.04.060 |
[58] | Tian, N., Huang, H.W., Wang, S.B., Zhang, T.R., Du, X. and Zhang, Y.H. (2020) Facet-Charge-Induced Coupling Dependent Interfacial Photocharge Separation: A Case of Bi-OI/g-C3N4 p-n Junction. Applied Catalysis B: Environmental, 267, Article ID: 118697. https://doi.org/10.1016/j.apcatb.2020.118697 |
[59] | Gao, Z.Q., Chen, K.Y., Wang, L., Bai, B., Liu, H. and Wang, Q.Z. (2019) Aminated Flower-Like ZnIn2S4 Coupled with Benzoic Acid Modified g-C3N4 Nanosheets via Covalent Bonds for Ameliorated Photocatalytic Hydrogen Generation. Applied Catalysis B: Environmental, 268, Article ID: 118462. https://doi.org/10.1016/j.apcatb.2019.118462 |
[60] | Xue, Z., Zhang, X.Y., Qin, J.Q. and Liu, R.P. (2020) Constructing MoS2/g-C3N4 Heterojunction with Enhanced Oxygen Evolution Reaction Activity: A Theoretical Insight. Applied Surface Science, 510, Article ID: 145489. https://doi.org/10.1016/j.apsusc.2020.145489 |
[61] | Zhao, S.S., Chen, S., Yu, H.T. and Quan, X. (2012) g-C3N4/TiO2 Hybrid Photocatalyst with Wide Absorption Wavelength Range and Effective Photogenerated Charge Separation. Separation and Purification Technology, 99, 50-54. https://doi.org/10.1016/j.seppur.2012.08.024 |
[62] | Wu, M., Yan, J.M., Zhang, X.W. and Zhao, M. (2015) Synthe-sis of g-C3N4 with Heating Acetic Acid Treated Melamine and Its Photocatalytic Activity for Hydrogen Evolution. Ap-plied Surface Science, 354, 196-200. https://doi.org/10.1016/j.apsusc.2015.01.132 |
[63] | Yang, Y.L., Mao, B.D., Gong, G., Li, D., Liu, Y.H., Cao, W.J., Xing, L., Zeng, J., Shi, W.D. and Yuan, S.Q. (2019) In-Situ Growth of Zn-AgIn5S8 Quantum Dots on g-C3N4 towards 0D/2D Heterostructured Photocatalysts with Enhanced Hydrogen Pro-duction. International Journal of Hydrogen Energy, 44, 15882-15891. https://doi.org/10.1016/j.ijhydene.2019.01.102 |
[64] | Ma, J., Tao, X.Y., Zhou, S.X., Song, X.Z., Guo, L., Wang, Y., Zhu, Y.B., Guo, L.T., Liu, Z.S., Fan, H.L. and Wei, X.Y. (2019) Facile Fabrication of Ag/PANI/g-C3N4 Composite with Enhanced Electrochemical Performance as Supercapacitor Electrode. Journal of Electroanalytical Chemistry, 835, 346-353. https://doi.org/10.1016/j.jelechem.2018.12.025 |
[65] | Xiao, Y.T., Tian, G.H., Li W., Xie, Y., Jiang, B.J., Tian, C.G., Zhao D.Y. and Fu, H.G. (2019) Molecule Self-Assembly Synthesis of Porous Few-Layer Carbon Nitride for Highly Efficient Photoredox Catalysis. Journal of the American Chemical Society, 141, 2508-2515. https://doi.org/10.1021/jacs.8b12428 |
[66] | Kang, J., Jin, C.Y., Li, Z.L., Wang, M., Chen, Z.Q. and Wang, Y.Z. (2020) Dual Z-Scheme MoS2/g-C3N4/Bi24O31Cl10 Ternary Heterojunction Photocatalysts for Enhanced Visible-Light Photodegradation of Antibiotic. Journal of Alloys and Compounds, 825, Article ID: 153975. https://doi.org/10.1016/j.jallcom.2020.153975 |
[67] | Wang, H.T., Bai, J.H., Dai, M., Liu, K.P., Liu, Y.Y., Zhou, L.S., Liu, F.M., Liu, F.M., Gao, Y., Yan, X. and Lu, G.Y. (2020) Visible Light Activated Excellent NO2 Sensing Based on 2D/2D ZnO/g-C3N4 Heterojunction Composites. Sensors and Actuators B: Chemical, 304, Article ID: 127287. https://doi.org/10.1016/j.snb.2019.127287 |
[68] | Zhai, J.L., Wang, T., Wang, C. and Liu, D.C. (2018) UV-Light-Assisted Ethanol Sensing Characteristics of g-C3N4/ZnO Composites at Room Temperature. Applied Surface Science, 441, 317-323. https://doi.org/10.1016/j.apsusc.2018.02.026 |