全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

北武夷东乡火山盆地粗面英安岩的地球化学特征及构造背景
Geochemical Characteristics and Tectonic Background of Trachydacite in the Rough Surface of North Wuyi Dongxiang Volcanic Basin

DOI: 10.12677/AG.2020.104029, PP. 312-328

Keywords: 东乡火山盆地,粗面英安岩,锆石U-Pb年代学,地球化学特征,构造演化
Dongxiang Volcanic Basin
, Trachydacite, Zircon U-Pb Chronology, Geochemical Characteristics, Tectonic Evolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

钾玄质系列火山岩的构造背景一直是地学界讨论的热点。为进一步探明东乡火山盆地火山岩的形成时代及构造演化过程,本文对东乡火山盆地的粗面英安岩进行了岩石学、LA-MC-ICP-MS锆石U-Pb年代学及地球化学研究。锆石U-Pb测年结果显示粗面英安岩的结晶年龄在135.5 ± 2.1 Ma和137.3 ± 2.3 Ma,属于早白垩世,对应于华南早白垩世的火山岩浆活动。粗面英安岩具有高钾钙碱性过铝质的特征,富集大离子亲石元素,亏损高场强元素,相对富集轻稀土元素(LREE),相对较亏损重稀土元素(HREE),较弱的Eu负异常等特征。据此,本文提出北武夷东乡火山盆地的形成与古太平洋板块向欧亚板块的深俯冲作用有关。地壳缩短加厚,地幔岩浆上升,使地壳受热而引起部分熔融,下部产生的玄武质岩浆经同化混染作用形成英安质岩浆。
The tectonic background of potassium basalt series of volcanic rocks has been a hot topic in geoscience. To further explore the formation period and tectonic evolution process of volcanic rocks in Dongxiang volcanic basin, this paper studies the lithologic, LA-MC-ICP-MS zircon U-Pb chronology and geochemistry of trachydacite in Dongxiang volcanic basin. The zircon U-Pb dating results showed that the crystallization age of the trachydacite was 135.5 ± 2.1 Ma and 137.3 ± 2.3 Ma, responding to the early Cretaceous volcanic-magmatic events in South China. The trachydacite is characterized by high potassium, calcium and alkaline aluminum, enrichment of large ionophilic elements, loss of high field strength elements, relative enrichment of light rare earth elements (LREE), relative loss of heavy rare earth elements (HREE), weak Eu negative anomaly and other characteristics. Accordingly, we attribute the formation of the Dongxiang volcanic basin to the deep subduction of the ancient Pacific plate to the Eurasian plate. The crust shortens and thickens, and the mantle magma rises, which causes partial melting by heating the crust. The basaltic magma produced in the lower part was assimilated and mixed to form dacite magma.

References

[1]  Xu, J.W., Zhu, G., Tong, W.X., Cui, K. and Liu, Q. (1987) Formation and Evolution of the Tancheng-Lujiang Wrench Fault System: A Major Shear System to the Northwest of the Pacific Ocean. Tectonophysics, 134, 273-310. https://doi.org/10.1016/0040-1951(87)90342-8
[2]  Xu, J.W., Ma, G.F., Tong, W.X., Zhu, G. and Lin, S.F. (1993) Displacement of the Tancheng-Lujiang Wrench Fault System and Its Geodynamic Setting in the Northwestern Circum-Pacific. In: Xu, J.W., Ed., The Tancheng-Lujiang Wrench Fault System, John Wiley and Sons, Chichester, 51-74.
[3]  Lapierre, H., Jahn, B.M., Charvet, J. and Yu, Y.W. (1997) Mesozoic Felsic Arc Magmatism and Continental Olivine Tholeiites in Zhejiang Province and Their Relationship with the Tectonic Activity in Southeastern China. Tectonophysics, 274, 321-338. https://doi.org/10.1016/S0040-1951(97)00009-7
[4]  周新民, 李武显. 中国东南部晚中生代火成岩成因: 岩石圈消减和玄武岩底侵相结合的模式[J]. 自然科学进展, 2000, 10(3): 240-247.
[5]  王德滋, 周新民. 中国东南部晚中生代花岗质火山——侵入杂岩成因与地壳演化[M]. 北京: 科学出版社, 2002.
[6]  Zhou, X.M. and Li, W.X. (2000) Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326, 269-287.
https://doi.org/10.1016/S0040-1951(00)00120-7
[7]  Zhou, X.M., Sun, T., Shen, W.Z., Shu, L.S. and Niu, Y.L. (2006) Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29, 26-33.
https://doi.org/10.18814/epiiugs/2006/v29i1/004
[8]  Zhang, B., Guo, F., Zhang, X.B., Wu, Y.M., Wang, G.Q. and Zhao, L. (2019) Early Cretaceous Subduction of Paleo-Pacific Ocean in the Coastal Region of SE China: Petrological and Geochemical Constraints from the Mafic Intrusions. Lithos, 334-335, 8-24.
https://doi.org/10.1016/j.lithos.2019.03.010
[9]  Wang, Y.J., Fan, W.M., Guo, F., Peng, T.P. and Li, C.W. (2003) Geochemistry of Mesozoic Mafic Rocks Adjacent to the Chenzhou-Linwu Fault, South China: Implications for the Lithospheric Boundary between the Yangtze and Cathaysia Blocks. International Geology Review, 45, 263-286.
https://doi.org/10.2747/0020-6814.45.3.263
[10]  Wang, Y.J., Fan, W.M., Peng, T.P. and Guo, F. (2005) Elemental and Sr-Nd Isotopic Systematics of the Early Mesozoic Volcanic Sequence in Southern Jiangxi Province, South China: Petrogenesis and Tectonic Implications. International Journal of Earth Sciences, 94, 53-65.
https://doi.org/10.1007/s00531-004-0441-4
[11]  Wang, Y.J., Fan, W.M., Sun, M., Liang, X.Q., Zhang, Y.H. and Peng, T.P. (2007) Geochronological, Geochemical and Geothermal Constraints on Petrogenesis of the Indosinian Peraluminous Granites in the South China Block: A Case Study in the Hunan Province. Lithos, 96, 475-502.
https://doi.org/10.1016/j.lithos.2006.11.010
[12]  范蔚茗, 王岳军, 郭锋, 等. 湘赣地区中生代镁铁质岩浆作用与岩石圈伸展[J]. 地学前缘, 2003, 10(3): 159-169.
[13]  宋传中, 李加好, 严加永, 等. 华南大陆东部若干构造问题的思考[J]. 中国地质, 2019, 46(4): 704-722.
[14]  毛景文, 陈懋弘, 袁顺达, 等. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报, 2011, 85(5): 636-658.
[15]  毛景文, 谢桂青, 程彦博, 等. 华南地区中生代主要金属矿床模型[J]. 地质论评, 2009, 55(3): 347-354.
[16]  毛景文, 谢桂青, 郭春丽, 等. 华南地区中生代主要金属矿床时空分布规律和成矿环境[J]. 高校地质学报, 2008, 14(4): 510-526.
[17]  毛建仁, 胡青, 叶海敏, 等. 武夷山成矿带构造——岩浆作用与成矿[J]. 矿物学报, 2011(S1): 81-93.
[18]  毛建仁, 厉子龙, 叶海敏. 华南中生代构造——岩浆活动研究: 现状与前景[J]. 中国科学: 地球科学, 2014, 44(12): 2593-2617.
[19]  陈毓川, 王登红, 徐志刚, 等. 华南区域成矿和中生代岩浆成矿规律概要[J]. 大地构造与成矿学, 2014, 38(2): 219-229.
[20]  华嵘辉, 吴德来, 余祖寿, 等. 江西上饶黄柏坑铅锌(铜银)矿床地质特征及找矿标志[J]. 福建地质, 2008, 27(4): 361-368.
[21]  罗平, 吴淦国, 张达, 等. 北武夷生米坑铅锌矿床地质地球化学特征与成因探讨[J]. 地质力学学报, 2009, 15(4): 349-362.
[22]  江西省地质矿产局912大队. 东乡县幅H50E0230111: 5万地质图说明书[M]. 地矿部江西地质矿产勘查开发局测绘大队, 1993.
[23]  张利民. 从信江盆地新资料论侏罗、白垩系的界线[J]. 地质评论, 1991, 37(4): 310-318.
[24]  代堰锫, 余心起, 吴淦国, 等. 北武夷蔡家坪铅锌矿床硫化物特征、矿产成因类型及成矿时代[J]. 地学前缘, 2011, 18(2): 321-338.
[25]  Wang, C.M., Zhang, D., Wu, G.G., Xu, Y.G., Carranza, E.J.M., Zhang, Y.Y., Li, H.K. and Geng, J.Z. (2013) Zircon U-Pb Geochronology and Geochemistry of Rhyolitic Tuff, Granite Porphyry and Syenogranite in the Lengshuikeng Ore District, SE China: Implications for a Continental Arc to Intra-Arc Rift Setting. Journal of Earth System Science, 122, 809-830.
https://doi.org/10.1007/s12040-013-0302-2
[26]  Su, H.M., Mao, J.W., He, X.R. and Lu, R. (2013) Timing of the Formation of the Tianhuashan Basin in Northern Wuyi as Constrained by Geochronology of Volcanic and Plutonic Rocks. Science China (Earth Sciences), 56, 940-955.
https://doi.org/10.1007/s11430-013-4610-9
[27]  Zhou, J., Jiang, Y.H., Xing, G.F., Zeng, Y. and Ge, W.Y. (2013) Geochronology and Petrogenesis of Cretaceous A-Type Granites from the NE Jiangnan Orogen, SE China. International Geology Review, 55, 1359-1383.
https://doi.org/10.1080/00206814.2013.774199
[28]  郭博然, 刘树文, 杨朋涛, 等. 江西卧龙谷花岗岩和铜厂花岗闪长斑岩的地球化学特征及成因——对赣东北地区铜矿成矿地质背景的制约[J]. 地质通报, 2013, 32(7): 1035-1046.
[29]  李晓峰, 华仁民, 马东升, 等. 大陆岩石圈伸展与斑岩铜矿成矿作用[J]. 岩石学报, 2019, 35(1): 76-88.
[30]  Guo, C.L., Mao, J.W. and Chen, Y.C. (2010) Zircon SHRIMP U-Pb Dating Geochemistry Sr-Nd-Hf Isotopic Analysis of the Yingqian Intrusion in Jiangxi Province, South China and Its Geological Significance. Acta Petrologica Sinica, 26, 919-937.
[31]  苏慧敏, 毛景文, 何细荣, 等. 北武夷天华山盆地形成时限的约束: 来自火山岩-侵入岩的年代学证据[J]. 中国科学(地球科学), 2013, 43(5): 745-759.
[32]  周先军, 李淑琴, 陈立泉. 江西东乡火山盆地成矿规律及找矿方向探讨[J]. 东华理工大学学报(自然科学版), 2019, 42(1): 45-51.
[33]  晏俊灵, 江俊杰, 张娟, 等. 江西省东乡火山岩区成矿地质、地球化学特征及找矿潜力[J]. 物探与化探, 2012, 36(4): 534-538.
[34]  欧阳学财, 狄永军, 张达, 等. 江西东乡花岗斑岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质通报, 2016, 35(11): 1869-1883.
[35]  刘颖, 刘海臣, 李献华. 用ICP-MS准确测定岩石样品中的40余种微量元素[J]. 地球化学, 1996, 25(6): 552-558.
[36]  周振华, 欧阳荷根, 武新丽, 等. 内蒙古道伦达坝铜钨多金属矿黑云母花岗岩年代学、地球化学特征及其地质意义[J]. 岩石学报,2014, 30(1):79-94.
[37]  李怀坤, 耿建珍, 郝爽, 等. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J]. 矿物学报, 2009, S1: 600-601.
[38]  Liu, Y.S., Hu, Z.C. and Gao, S. (2008) In Situ Analysis of Major and Trance Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257, 34-43.
https://doi.org/10.1016/j.chemgeo.2008.08.004
[39]  Peccerillo, R. and Taylor, S.R. (1976) Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81.
https://doi.org/10.1007/BF00384745
[40]  Middlemost, E.A.K. (1985) Magmas and Magmatic Rocks. Longman, London, 1-266.
[41]  Maniar, P.D. and Piccoli, P.M. (1989) Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101, 635-643.
https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[42]  Jahn, B.W., Wu, F.Y. and Hong, D.W. (2000) Important Crustal Growth in the Phanerozoic: Isotopic Evidence of Granitoids from the East-Central Asia. Earth and Planetary Science Letters, 109, 5-20.
https://doi.org/10.1007/BF02719146
[43]  Sun, S.S. and McDonough, W.F. (1989) Chemical and Isotope Systematics of Oceanic Basalts Implications for Mantle Composition and Processes. In: Saunders, A.D., Ed., Magmatism in Ocean Basins, Geol. Soc. Publication, Vol. 42, 313-3456.
https://doi.org/10.1144/GSL.SP.1989.042.01.19
[44]  兰正卿. 江西省东北部矿物富集区地球化学与年代学研究[J]. 世界有色金属, 2019(17): 248-250.
[45]  Su, H.M., Jiang, S.Y., Cao, M.Y. and Luo, P. (2019) Rare-Metal Mineralization Potential and Petrogenesis of Early Cretaceous I-Type Granitic Rocks in the Lizikeng Volcanic Basin of Jiangxi Province, South China: Evidence from Mineralogy, Geochemistry, and Geochronology. Mineralium Deposita, 55, 453-468.
https://doi.org/10.1007/s00126-019-00894-4
[46]  Chen, L., Zhao, Z.F. and Zheng, Y.F. (2013) Origin of Andesitic Rocks: Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin, South China. Lithos, 190-191, 220-239.
https://doi.org/10.1016/j.lithos.2013.12.011
[47]  杨明桂, 王光辉. 华南陆区板块活动与构造体系的形成演化[J]. 地质学报, 2019, 39(3): 528-544.
[48]  Morrison, G.W. (1980) Characteristics and Tectonic Setting of the Shoshonite Rock Association. Lithos, 13, 97-108.
https://doi.org/10.1016/0024-4937(80)90067-5
[49]  徐义刚, 何斌, 罗震宇, 等. 我国大火成岩省和地幔柱研究进展与展望[J]. 矿物岩石地球化学通报, 2013, 32(1): 25-39.
[50]  邓晋福, 叶德隆, 赵海玲, 等. 下扬子地区火山作用深部过程与盆地形成[M]. 武汉: 中国地质大学出版社, 1992: 1-184.
[51]  Taylor, S.R. and Mclennan, S.M. (1986) The Chemical Composition of the Archaean Crust (in the Nature of the Lower Continental Crust). Geological Society Special Publications, 24, 173-178.
https://doi.org/10.1144/GSL.SP.1986.024.01.16
[52]  Nockolds, S.R. and Allen, R. (1953) The Geochemistry of Some Igneous Rock Series. Geochimica et Cosmochimica Acta, 4, 105-142.
https://doi.org/10.1016/0016-7037(53)90055-6
[53]  Sylvester, P.J. (1998) Post-Collisional Strongly Peraluminous Granites. Lithos, 45, 29-44.
https://doi.org/10.1016/S0024-4937(98)00024-3
[54]  邓晋福, 罗照华, 莫宣学, 等. 岩石成因、构造环境与成矿作用[M]. 北京: 地质出版社, 2004: 1-381.
[55]  Müller, D. and Groves, D.I. (2018) Potassic Igneous Rocks and Associated Gold-Copper Mineralization. 5nd Edition, Springer Verlag, Berlin, 1-125.
[56]  Zhao, Z.D., Mo, X.X., Dilek, Y., Niu, Y.L., DePaolo, D.J., Robinson, P., Zhu, D.C., Sun, C.G., Dong, G.C., Zhou, S., Luo, Z.H. and Hou, Z.Q. (2009) Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113, 190-212.
https://doi.org/10.1016/j.lithos.2009.02.004
[57]  Foley, S. and Peccerillo, A. (1992) Potassic and Ultrapotassic Magmas and Their Origin. Lithos, 28, 181-185.
https://doi.org/10.1016/0024-4937(92)90005-J
[58]  Muller, D., Rock, N.M.S. and Groves, D.I. (1992) Geochemical Discrimination between Shoshonitic and Potassic Volcanic Rocks from Different Tectonic Settings: A Pilot Study. Mineral Petrol, 46, 259-289.
https://doi.org/10.1007/BF01173568
[59]  邱检生, 徐夕生, 蒋少涌. 地壳深俯冲与富钾火山岩成因[J]. 地学前缘, 2003(3): 191-201.
[60]  Rogers, N.W. and Setterfield, T.N. (1994) Potassium and Incompatible-Element Enrichment in Shoshonitic Lavas from the Tavua Volcano, Fiji. Chemical Geology, 118, 43-62.
https://doi.org/10.1016/0009-2541(94)90169-4
[61]  Allcl, P.A., Gourdaud, A., et al. (1998) Petrology and Geochemistry of Potassic Rocks in the Golcuk Area (Isparta SW Turkey): Genesis of Enriched Alkaline Magmas. Journal of Volcanology and Geothermal Research, 85, 423-446.
https://doi.org/10.1016/S0377-0273(98)00065-1
[62]  Chung, S.L., Wang, K.L., Crawford, A.J., et al. (2001) High-Mg Potassic Rocks from Tai Wan: Implications for the Genesis of Orogenic Potassic Lavas. Lithos, 59, 153-170.
https://doi.org/10.1016/S0024-4937(01)00067-6
[63]  Massonne, H.J. (1992) Evidence for Low-Temperature Ultrapotassi Csiliceous Fluids in Subduction Zone Environments from Experiments in the System K2O-MgO-Al2O3-SiO2-H2O (KMASH). Lithos, 28, 421-434.
https://doi.org/10.1016/0024-4937(92)90017-S
[64]  王岳军, 范蔚茗, 郭锋, 等. 湘东南中生代花岗闪长质小岩体的岩石地球化学特征[J]. 岩石学报, 2001, 17(1): 169-175.
[65]  Miller, C., Schuster, R., Klotzli, U., et al. (1999) Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geological and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrologenesis. Journal of Petrology, 40, 1399-1424.
https://doi.org/10.1093/petroj/40.9.1399
[66]  邓晋福, 赵海玲, 莫宣学, 等. 中国大陆根柱构造大陆动力学的钥匙[M]. 北京: 地质出版社, 1996: 1-110.
[67]  Li, X.H., Li, W.X., Li, Z.X., Lo, C.H., Wang, J., Ye, M.F. and Yang, Y.H. (2009) Amalgemation between the Yangtze and Cathaysia Block in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemisthy and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 147, 117-128.
https://doi.org/10.1016/j.precamres.2009.07.004
[68]  周新民. 南岭地区晚中生代花岗岩成因与岩石圈动力学演化[M]. 北京: 科学出版社, 2007: 1-691.
[69]  Sun, W.D., Yang, X.Y., Fan, W.M. and Wu, F.Y. (2012) Mesozoic Large Scale Magmatism and Mineralization in South China: Preface. Lithos, 150, 1-5.
https://doi.org/10.1016/j.lithos.2012.06.028
[70]  冯艳芳, 邓晋福, 肖庆辉, 等. 长乐-南澳构造带花岗岩的年代学, 岩石组合与构造演化[M]. 北京: 地质出版社, 2013: 1-168.
[71]  毛建仁, 邢光福, 叶海敏, 等. 中国东南部及邻区中新生代岩浆作用与成矿[M]. 北京: 科学出版社, 2013: 1-524.
[72]  李兆鼐, 李之彤, 李汉声, 等. 中国东部中新生代火成岩及其深部过程[M]. 北京: 地质出版社, 2003: 1-357.
[73]  Wang, Q., Xu, J.F., Jian, P., Bao, Z.W., Zhao, Z.H., Li, C.F., Xiong, X.L. and Ma, J.L. (2006) Petrogenesis of Adakitic Prophyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47, 119-144.
https://doi.org/10.1093/petrology/egi070
[74]  张旗, 李承东. 花岗岩: 地球动力学意义[M]. 北京: 海洋出版社, 2012: 1-276.
[75]  张国伟, 郭安林, 王岳军, 等. 中国华南大陆构造与问题[J]. 中国科学, 2013, 43(10): 1553-1582.
[76]  邓晋福, 冯艳芳, 狄永军, 等. 华南地区侵入岩时空演化框架[J]. 地质论评, 2016, 62(1): 3-16.
[77]  吕劲松, 张雪辉, 孙建东, 等. 钦杭成矿带东段燕山期中酸性岩浆活动时空演化与成矿规律[J]. 岩石学报, 2017, 33(11): 3635-58.
[78]  刘磊. 中国东南部晚中生代幕式火山岩浆作用及古太平洋板块俯冲机制[D]: [博士学位论文]. 南京: 南京大学, 2015.
[79]  狄永军, 徐贻赣, 吴淦国, 等. 江西冷水坑银铅锌矿田推覆构造的形成时代: 来自年代学的约束[J]. 地学前缘, 2013, 20(4): 340-349.
[80]  Li, Z.X. and Li, X.K. (2007) Formation of the 1300 km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35, 179-182. https://doi.org/10.1130/G23193A.1
[81]  Li, Z.X., Li, X.H., Chung, S.L., Lo, C.H., Xu, X.S. and Li, W.X. (2012) Magmatic Switch-On and Switch-Off along the South China Continental Margin since the Permian: Transition from an Andean-Type to a Western Pacific-Type Plate Boundary. Tectonophysics, 532-535, 271-290. https://doi.org/10.1016/j.tecto.2012.02.011
[82]  Liu, Z., Yang, X.Y., Liu, C.M., Huang, D.Z., Zhou, W.J., Xia, T., Liang, E.Y. and Dai, T.G. (2018) Genesis of Early Cretaceous Porphyrite-Type Iron Deposits and Related Sub-Volcanic Rocks in the Ningwu Volcanic Basin, Middle-Lower Yangtze Metallogenic Belt, Southeast China. International Geology Review, 60, 1507-1528. https://doi.org/10.1080/00206814.2017.1419883
[83]  Xiao, Z., Wang, S., Qi, S., Kuang, J., Zhang, M., Tian, F. and Han, Y. (2019) Petrogenesis, Tectonic Evolution and Geothermal Implications of Mesozoic Granites in the Huangshadong Geothermal Field, South China. Journal of Earth Science, 1674, 1-18. https://doi.org/10.1007/s12583-019-1242-9
[84]  Gottini, V. (1968) Serial Character of the Volcanic Rocks of Pantelleria. Bulletin Volcanologique, Tome, 33, 818-827. https://doi.org/10.1007/BF02596751
[85]  Harris, N.B.W., Marzouki, F.M.H. and Ali, S. (1986) The Jabel Sayd Complex, Arabian Shield: Geochemical Constraints on the Origin of Peralkaline and Related Granites. Geological Society of London, 143, 287-295. https://doi.org/10.1144/gsjgs.143.2.0287
[86]  Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25, 956-983. https://doi.org/10.1093/petrology/25.4.956

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133