全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

顾及点云曲率的快速点云表面模型重建算法
A Fast Surface Reconstruction Algorithm Considering the Curvature of Point Cloud

DOI: 10.12677/GST.2020.82011, PP. 88-95

Keywords: 点云表面模型重建,Delaunay,可视信息,四面体,光线
Surface Reconstruction
, Delaunay, Visual Information, Tetrahedron, Ray

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对现行点云表面模型重建算法的效率问题,提出一种顾及点云曲率的快速点云表面模型重建算法。首先将点云Delaunay三角化,然后利用点云曲率删减可视信息,用剩余可视信息构建图割问题后,求解图割问题得到点云表面模型。实验结果表明,本文算法能得到完整度高,细节丰富的表面模型,重建速度快。
We describe a fast surface reconstruction algorithm considering the curvature of point cloud from a set of merged range scans. Our key contribution is improving the efficiency of the algorithm by deleting part of visual information. First, Delaunay edges are added to the point cloud to construct Delaunay structure. Then, part of visual information is deleted base of curvature of point cloud, and a graph-cuts problem is established based on the remaining visual information. Finally, a surface model is obtained by solving the graph-cuts problem. We tested our method on several publicly available sets of range scans. The experimental results show that the method can efficiently reconstruct high-quality surface model with rich details and high integrity.

References

[1]  杨建思, 杜志强, 彭正洪, 等. 数字城市三维景观模型的建模技术[J]. 武汉大学学报(工学版), 2003, 36(3): 37-40.
[2]  詹总谦, 林元培, 艾海滨. 基于3ds Max二次开发的建筑物快速三维重建[J]. 测绘通报, 2016(11): 22-25.
[3]  杨必胜, 梁福逊, 黄荣刚. 三维激光扫描点云数据处理研究进展、挑战与趋势[J]. 测绘学报, 2017, 46(10): 1509-1516.
[4]  张卫龙. 局部信息约束的三维重建方法研究[D]: [博士学位论文]. 武汉: 武汉大学, 2019.
[5]  马东岭, 王晓坤, 李广云. 利用图割算法进行城市密集点云表面模型重建[J]. 测绘通报, 2019(2): 45-48.
[6]  Kazhdan, M. (2006) Poisson Surface Reconstruction. Symposium on Geometry Processing, Goslar, 61-70.
[7]  Rocchini, C., Cignoni, P., Ganovelli, F., et al. (2001) Marching Intersections: An Efficient Resampling Algorithm for Surface Management. International Conference on Shape Modeling & Applications, Los Alamitos, 296.
[8]  Calakli, F. and Taubin, G. (2012) SSD-C: Smooth Signed Distance Colored Surface Reconstruction. In: Ex-panding the Frontiers of Visual Analytics and Visualization, Springer, London, 323-338.
https://doi.org/10.1007/978-1-4471-2804-5_18
[9]  Labatut, P., Pons, J.P. and Keriven, R. (2009) Robust and Efficient Surface Reconstruction from Range Data. Computer Graphics Forum, 28, 2275-2290.
https://doi.org/10.1111/j.1467-8659.2009.01530.x
[10]  Jancosek, M. and Pajdla, T. (2011) Multi-View Recon-struction Preserving Weakly-Supported Surfaces. Computer Vision and Pattern Recognition (CVPR), Colorado Springs, 3121-3128.
https://doi.org/10.1109/CVPR.2011.5995693
[11]  Cao, T., et al. (2014) A GPU Accelerated Algo-rithm for 3D Delaunay Triangulation. In: Proceedings of the Symposium on Interactive 3D Graphics, ACM, New York, 47-54.
https://doi.org/10.1145/2556700.2556710
[12]  詹洋, 尹颜朋. 基于Minimum s-t Cut三维表面重建算法[J]. 现代计算机(专业版), 2018(2): 34-37.
[13]  Boykov, Y. and Kolmogorov, V. (2001) An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision. In: International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer, Berlin, 359-374.
https://doi.org/10.1007/3-540-44745-8_24
[14]  Jancosek, M. and Pajdla, T. (2014) Exploiting Visibility Infor-mation in Surface Reconstruction to Preserve Weakly Supported Surfaces. International Scholarly Research Notices, 2014, Article ID: 798595.
https://doi.org/10.1155/2014/798595
[15]  Boissonnat, J.D., Devillers, O., Pion, S., et al. (2002) Triangulations in CGAL. Computational Geometry, 22, 5-19.
https://doi.org/10.1016/S0925-7721(01)00054-2
[16]  Rusu, R.B. and Cousins, S. (2011) 3D Is Here: Point Cloud Library (PCL). IEEE International Conference on Robotics and Automation, Shanghai, 9-13 May 2011, 1-4.
https://doi.org/10.1109/ICRA.2011.5980567

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133