All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Lamella Silicon Solar Cell under Both Temperature and Magnetic Field: Width Optimum Determination

DOI: 10.4236/jemaa.2020.124005, PP. 43-55

Keywords: Silicon Vertical Junction, Back Surface Recombination Velocity, Magnetic Field, Temperature, Lamella Width

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work deals with determining the optimum thickness of the lamella wafer of silicon solar cell. The (p) base region makes up the bulk of the thickness of the wafer. This thickness has always been a factor limiting the performance of the solar cell, as it produces the maximum amount of electrical charges, contributing to the photocurrent. Determining the thickness of the wafer cannot be only mechanical. It takes into account the internal physical mechanisms of generation-diffusion-recombination of excess minority carriers. They are also influenced by external factors such as temperature and magnetic field. Under these conditions, magneto transport equation is required to be applied on excess minority carrier in lamella base silicon solar cell. It yields maximum diffusion coefficient which result on Lorentz law and Umklapp process. Then from photocurrent, back surface recombination velocity expressions are derived, both maximum diffusion coefficient and thickness dependent. The plot of the back surface recombination calibration curves as function of lamella width, leads to its maximum values, trough intercept points. Lamella optimum width is then obtained, both temperature and magnetic field dependent and expressed in relationships to show the required base thickness in the elaboration process.

References

[1]  Rodot, L.Q.N.M. (1992) Solar Cells with 15.6% Efficiency on Multicrystalline Silicon, Using Impurity Gettering Back Surface Field and Emitter Passivation. International Journal of Solar Energy, 11, 273-279.
https://doi.org/10.1080/01425919208909745
[2]  Luque, A., Ruiz, J.M., Cuevas, A., Eguren, J. and Agost, M.G. (1997) Double Side Solar Cells to Improve Static Concentrator. Proceedings of the 1st European Photovoltaic Solar Energy Conference, Luxembourg, 269-277.
https://doi.org/10.1007/978-94-009-9840-7_25
[3]  Yadav, P., Pandey, K., Tripathi, B., Kumar, C.M., Srivastava, S.K., Singh, P.K. and Kumar, M. (2015) An Effective Way to Analyze the Performance Limiting Parameters of a Poly-Crystalline Silicon Solar Cell Fabricated in the Production Line. Solar Energy, 122, 1-10.
https://doi.org/10.1016/j.solener.2015.08.005
[4]  Ohtsuka, H., Sakamoto, M., Tsutsui, K. and Yazawa, Y. (2000) Bifacial Silicon Solar Cells with 21.3% Front Efficiency and 19.8% Rear Efficiency. Progress in Photovoltaics: Research and Applications, 8, 385-390.
https://doi.org/10.1002/1099-159X(200007/08)8:4<385::AID-PIP340>3.0.CO;2-B
[5]  Green, M.A. (1995) Silicon Solar Cells Advanced Principles & Practice. Bridge Printer Pty. Ltd., Clayton North, 29-35.
[6]  Meusel, M., Benssch, W., Berdunde, T., Kern, R., Khorenko, V., Kostler, W., Laroche, G., Torunski, T., Zimmermann, W., Strobl, G., Guter, W., Hermle, M., Hoheisel, R., Siefer, G., Welser, E., Dimroth, F., Bett, A.W., Geens, W., Baur, C., Taylor, S. and Hey, G. (2007) Development and Production of European III-V Multijunction Solar Cells. Proceeding of the 22nd European Photovoltaic Solar Energy Conference, 16-51.
[7]  Misiakos, K., Wang, C.H., Neugroschel, A. and Lindholm, F.A. (1990) Simultaneous Extraction of Minority-Carrier Parameters in Crystalline Semiconductors by Lateral Photocurrent. Journal of Applied Physics, 67, 321-333.
https://doi.org/10.1063/1.345256
[8]  Sinton, R.A. and Cuevas, A. (1996) Contactless Determination of Current-Voltage Characteristics and Minority-Carrier Lifetimes in Semiconductors from Quasi-Steady-State Photoconductance Data. Applied Physics Letters, 69, 2510-2512.
https://doi.org/10.1063/1.117723
[9]  Basu, P.K. and Singh, S.N. (1994) On the Determination of Minority Carrier Diffusion Length in the Base Region of n+-p-p+ Silicon Solar Cells Using Photoresponse Methods. Solar Energy Materials and Solar Cells, 33, 317-329.
https://doi.org/10.1016/0927-0248(94)90234-8
[10]  Rosling, M., Bleichner, H., Mundqvist, M. and Nordlander, E. (1992) A Novel Technique for the Simultaneous Measurement of Ambipolar Carrier Lifetime and Diffusion Coefficient in Silicon. Solid-State Electronics, 35, 1223-1227.
https://doi.org/10.1016/0038-1101(92)90153-4
[11]  Stokes, E.D. and Chu, T.L. (1977) Diffusion Lengths in Solar Cells from Short-Circuit Current Measurements. Applied Physics Letters, 30, 425-426.
https://doi.org/10.1063/1.89433
[12]  Donolato, C. (1994) Reciprocity Theorem for Charge Collection by a Surface with Finite Collection Velocity: Application to Grain Boundaries. Journal of Applied Physics, 76, 959-966.
https://doi.org/10.1063/1.357774
[13]  Reynolds, J.H. and Meulenberg, A. (1974) Measurement of Diffusion Length in Solar Cells. Journal of Applied Physics, 45, 2582-2592.
https://doi.org/10.1063/1.1663633
[14]  Alam, M.K. and Yeow, Y.T. (1981) Evaluation of the Surface Photovoltage Method of Minority-Carrier Diffusion-Length Measurement. Solid-State Electronics, 24, 1117-1119.
https://doi.org/10.1016/0038-1101(81)90179-9
[15]  Sharma, S.K., Singh, S.N., Chakravarty, B.C. and Das, B.K. (1986) Determination of Minority-Carrier Diffusion Length in a p-Silicon Wafer by Photocurrent Generation Method. Journal of Applied Physics 60, 3550-3552.
https://doi.org/10.1063/1.337610
[16]  Mazhari, B. and Morkoç, H. (1993) Surface Recombination Velocity by Chemical Treatment. Journal of Applied Physics, 73, 7509-7514.
https://doi.org/10.1063/1.353998
[17]  De Visschere, P. (1986) Comment on G. J. Rees Surface Recombination Velocity—A Useful Concept? Solid-State Electronics, 29, 1161-1165.
https://doi.org/10.1016/0038-1101(86)90059-6
[18]  Takahashi, Y., Kondo, H., Yamazaki, T., Uraoka, Y. and Fuyuki, T. (2007) Precise Analysis of Surface Recombination Velocity in Crystalline Silicon Solar Cells Using Electroluminescence. Japanese Journal of Applied Physics, 46, 1149-1151.
https://doi.org/10.1143/JJAP.46.L1149
[19]  Verlinden, P. and Van De Wiele, F. (1983) Determination of Diffusion Length and Surface Recombination Velocity in Interdigitated Back Conctact (IBC) Solar Cells. Solid-State Electronics, 26, 1089-1094.
https://doi.org/10.1016/0038-1101(83)90007-2
[20]  Diasse, O., Diao, A., Wade, M., Diouf, M.S., Diatta, I., Mane, R., Traore, Y. and Sissoko, G. (2018) Back Surface Recombination Velocity Modeling in White Biased Silicon Solar Cell under Steady State. World Journal of Condensed Matter Physics, 9, 189-201.
https://doi.org/10.4236/jmp.2018.92012
[21]  Diao, A., Wade, M., Thiame, M. and Sissoko, G. (2017) Bifacial Silicon Solar Cell Steady Photoconductivity under Constant Magnetic Field and Junction Recombination Velocity Effects. Journal of Modern Physics, 8, 2200-2208.
https://doi.org/10.4236/jmp.2017.814135
[22]  Ba, F., Seibou, B., Wade, M., Diouf, M.S., Ly, B. And Sissoko, G. (2016) Equivalent Electric Model of the Junction Recombination Velocity limiting the Open Circuit of a Vertical Parallel Junction Solar Cell under Frequency Modulation. IPASJ International Journal of Electronics & Communication, 4, 1-11.
[23]  Diouf, M.S., Sahin, G., Thiam, A., Ngom, M.I., Faye, K., Gaye, D. and Sissoko, G. (2015) Determination of the Junction Surface Recombination Velocity Limiting the Open Circuit (Sfoc) for a Bifacial Silicon Solar Cell under External Electric Field. International Journal of Innovative Science, Engineering & Technology, 2, 931-938.
http://www.ijiset.com
[24]  Ly, I., Ndiaye, M., Wade, M., Thiam, N., Gueye, S. and Sissoko, G. (2013) Concept of Recombination Velocity Sfcc at the Junction of a Bifacial Silicon Solar Cell, in Steady State, Initiating the Short-Circuit Condition. Research Journal of Applied Sciences, Engineering and Technology, 5, 203-208.
https://doi.org/10.19026/rjaset.5.5105
[25]  Bocande, Y.L.B., Correa, A., Gaye, I., Sow, M.L. and Sissoko, G. (1994) Bulk and Surfaces Parameters Determination in High Efficiency Si Solar Cells. Renewable Energy, 5, 1698-1700.
[26]  El Hadji, N., Sahin, G., Thiam, A., Dieng, M., Ly Diallo, H., Ndiaye, M. and Sissoko, G. (2015) Study of the Intrinsic Recombination Velocity at the Junction of Silicon Solar under Frequency Modulation and Irradiation. Journal of Applied Mathematics and Physics, 3, 1522-1535.
http://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2015.311177
[27]  Rose, B.H. and Weaver, H.T. (1983) Determination of Effective Surface Recombination Velocity and Minority Carrier Lifetime in High-Efficiency Si Solar Cells. Journal of Applied Physics 54, 238-247.
https://doi.org/10.1063/1.331693
[28]  Fossum, J.G. (1977) Physical Operation of Back-Surface-Field Silicon Solar Cells. IEEE Transactions on Electron Devices, 2, 322-325.
https://doi.org/10.1109/T-ED.1977.18735
[29]  Sissoko, G., Sivoththananm, S., Rodot, M. and Mialhe, P. (1992) Constant Illumnation-Induced Open Circuit Voltage Decay (CIOCV) Method, as Applied to High Efficiency Si Solar Cells for Bulk and Back Surface Characterization. 11th European Photovoltaic Solar Energy Conference and Exhibition, Montreux, 352-354.
[30]  Diallo, H.L., Maïga, A.S., Werene, A. and Sissoko, G. (2008) New Approach of Both Junction and Back Surface Recombination Velocities in a 3D Modeling Study of a Polycrystalline Silicon Solar Cell. The European Physical Journal Applied Physics, 42, 203-211.
https://doi.org/10.1051/epjap:2008085
[31]  Dugas, J. (1994) 3D Modelling of a Reverse Cell Made with Improved Multicrystalline Silicon Wafers. Solar Energy Materials and Solar Cells, 32, 71-88.
https://doi.org/10.1016/0927-0248(94)90257-7
[32]  Gupta, S., Ahmed, F. and Garg, S. (1988) A Method for the Determination of the Material Parameters, D, L0, S and from Measured A.C. Short-Circuit Photocurrent. Solar Cells, 25, 61-72.
https://doi.org/10.1016/0379-6787(88)90058-0
[33]  Flohr, Th. and Helbig, R. (1989) Determination of Minority-Carrier Lifetime and Surface Recombination Velocity by Optical-Beam-Induced-Current Measurements at Different Light Wavelengths. Journal of Applied Physics, 66, 3060-3065.
https://doi.org/10.1063/1.344161
[34]  Zondervan, A., Verhoef, L.A. and Lindholm, F.A. (1988) Measurement Circuits for Silicon-Diode and Solar-Cell Lifetime and Surface Recombination Velocity by Electrical Short-Circuit Current Decay. IEEE Transactions on Electron Devices, 35, 85-88.
https://doi.org/10.1109/16.2419
[35]  Sissoko, G., Nanéma, E., Ndiaye, A.L., Bocandé, Y.L.B. and Adj, M. (1996) Minority Carrier Diffusion Length Measurement in Silicon Solar Cell under Constant White Bias Light. Renewable Energy, 3, 1594-1597.
[36]  Luque, A., Ruiz, J.M., Cuevas, A., Eguren, J. and Agost, M.G. (1997) Double Side Solar Cells to Improve Static Concentrator. Photovoltaic Solar Energy Conference, Luxembourg, 269-277.
https://doi.org/10.1007/978-94-009-9840-7_25
[37]  Dieye, M., Mbodji, S., Zoungrana, M., Zerbo, I., Dieng, B. and Sissoko, G. (2015) A 3D Modelling of Solar Cell’s Electric Power under Real Operating Point. World Journal of Condensed Matter Physics, 5, 275-283.
http://www.scirp.org/journal/wjcmp
https://doi.org/10.4236/wjcmp.2015.54028
[38]  Kunst, M., Muller, G., Schmidt, R. and Wetzel, H. (1988) Surface and Volume Decay Processes in Semiconductors Studied by Contactless Transient Photoconductivity Measurements. Applied Physics, 46, 77-85.
https://doi.org/10.1007/BF00615912
[39]  Lindholm, F.A., Liou, J.J., Neugroschel, A., and Jung, T.W. (1987) Determination of Lifetime and Surface Recombination Velocity of p-n Junction Solar Cells and Diodes by Observing Transients. IEEE Transactions on Electron Devices, 34, 277-283.
https://doi.org/10.1109/T-ED.1987.22919
[40]  Barro, F.I., Maiga, A.S., Wereme, A. and Sissoko, G. (2010) Determination of Recombination Parameters in the Base of a Bifacial Silicon Solar Cell under Constant Multispectral Light. Physical and Chemical News, 56, 76-84.
[41]  Jung, T.-W., Lindholm, F.A. and Neugroschel, A. (1984) Unifying View of Transient Responses for Determining Lifetime and Surface Recombination Velocity in Silicon Diodes and Back-Surface-Field Solar Cells, with Application to Experimental Short-Circuit-Current Decay. IEEE Transactions on Electron Devices, 31, 588-595.
https://doi.org/10.1109/T-ED.1984.21573
[42]  Belmonte, G.G., Boix, P.P., Bisquert, J., Sessolo, M. and Bolink, H.J. (2010) Simultaneous Determination of Carrier Lifetime and Electron Density-of-States in P3HT: PCBM Organic Solar Cells under Illumination by Impedance Spectroscopy. Solar Energy Materials & Solar Cells, 94, 366-375.
https://doi.org/10.1016/j.solmat.2009.10.015
[43]  Wang, C.H. and Neugroschel, A. (1987) Minority-Carrier Lifetime and Surface Recombination Velocity Measurement by Frequency-Domain Photpluminescence. IEEE Transaction on Electron Devices, 38, 2169-2180.
https://doi.org/10.1109/16.83745
[44]  Honma, N., Munakata, C. and Shimizu, H. (1988) Calibration of Minority Carrier Lifetimes Measured with an Ac Photovoltaic Method. Japanese Journal of Applied Physics, 27, 1322-1326.
https://doi.org/10.1143/JJAP.27.1322
[45]  Dione, B., Sow, O., Wade, M., Ibrahima, L.Y., Mbodji, S. and Sissoko, G. (2016) Experimental Processus for Acquisition Automatic Features of I-V Properties and Temperature of the Solar Panel by Changing the Operating Point. Circuits and Systems, 7, 3984-4000.
http://www.scirp.org/journal/cs
https://doi.org/10.4236/cs.2016.711330
[46]  Sissoko, G. and Mbodji, S. (2011) A Method to Determine the Solar Cell Resistances from Single I-V Characteristic Curve Considering the Junction Recombination Velocity (Sf). International Journal of Pure and Applied Sciences and Technology, 6, 103-114.
[47]  Lago-Aurrekoetxea, R.M., del Can Izo, C., Pou, I. and Luque, A. (2001) Fabrication Process for Thin Silicon Solar Cells. 17th European PVSEC, Munich, 1519-1522.
[48]  Schneider, A., Gerhards, C., Huster, F., Neu, W., Spiegel, M., Fath, P., Bucher, E., Young, R.J.S., Prince, A.G., Raby, J.A. and Carollal, A.F. (2001) BSF for Thin Screen-Printed Multicrystalline Si Solar Cells. 17th European PVSEC, Munich, 1768-1771.
[49]  Bertrand, D., Manuel, S., Pirot, M., Kaminski-Cachopo, A. and Veschetti, Y. (2017) Modelling of Edge Losses in Al-BSF Silicon Solar Cells. IEEE Journal of Photovoltaics, 7, 78-84.
https://doi.org/10.1109/JPHOTOV.2016.2618603
[50]  Honma, N. and Munakata, C. (1987) Sample Thickness Dependence of Minority Carrier Lifetimes Measured Using an Ac Photovoltaic Method. Japanese Journal of Applied Physics, 26, 2033-2036.
https://doi.org/10.1143/JJAP.26.2033
[51]  Schinke, C., Hinken, D., Bothe, K., Ulzhöfer, C., Milsted, A., Schmidt, J. and Brendel, R. (2011) Determination of the Collection Diffusion Length by Electroluminescence Imaging. Energy Procedia, 8, 147-152.
https://doi.org/10.1016/j.egypro.2011.06.116
[52]  Wise, J.F. (1970) Vertical Junction Hardened Solar Cell. U.S. Patent 3, 690-953.
[53]  Gover, A. and Stella, P. (1974) Vertical Multijunction Solar-Cell One-Dimensional Analysis. IEEE Transactions on Electron Devices, ED-21, 351-356.
https://doi.org/10.1109/T-ED.1974.17927
[54]  Mazhari, B. and Morkoç, H. (1993) Theoretical Study of a Parallel Vertical Multi-Junction Silicon. Journal of Applied Physics, 73, 7509-7514.
https://doi.org/10.1063/1.353998
[55]  Dione, M.M., Ly Diallo, H., Wade, M., Ly, I., Thiame, M., Toure, F., Gueye Camara, A., Dieme, N., Nouhou Bako, Z., Mbodji, S., Barro, F.I. and Sissoko, G. (2010) Determination of the Shunt and Series Resistances of a Vertical Multijunction Solar Cell under Constant Multispectral Light. 26th European Photovoltaic Solar Energy Conference and Exhibition, 250-254.
[56]  Ngom, M.I., Thiam, A., Sahin, G., El Moujtaba, M.A.O., Faye, K., Diouf, M.S. and Sissoko, G. (2015) Influence of Magnetic Field on the Capacitance of a Vertical Junction Parallel Solar Cell in Static Regime, under Multispectral Illumination. International Journal of Pure & Applied Sciences & Technology, 31, 65-75.
[57]  Diallo, H.L., Dieng, B., Ly, I., Dione, M.M., Ndiaye, M., Lemrabott, O.H., Bako, Z.N., Wereme, A. and Sissoko, G. (2012) Determination of the Recombination and Electrical Parameters of a Vertical Multi-Junction Silicon Solar Cell. Research Journal of Applied Science, Engineering and Technology, 4, 2626-2631.
[58]  Terheiden, B., Hahn, G., Fath, P. and Bucher, E. (2000) The Lamella Silicon Solar Cell. 16th European Photovoltaic Solar Energy Conference, 1377-1380.
[59]  Kopach, V.R., Kirichenko, M.V., Shramko, S.V., Zaitsev, R.V. and Bondarenko, S.A. (2008) New Approach to the Efficiency Increase Problem for Multi-Junction Silicon Photovoltaic Converters with Vertical Diode Cells. Functional Materials, 15, 253-258.
[60]  Xing, Y., Han, P., Wang, S., Liang, P., Lou, S., Zhang, Y., Hu, S., Zhu, H., Mi, Y. and Zhao, C. (2013) Analysis of Effects of Front and Back Surface Dopants on Silicon Vertical Multi-Junction Solar Cell by 2D Numerical Simulation. Science China Technological Sciences, 56, 2798-2807.
https://doi.org/10.1007/s11431-013-5378-z
[61]  Betser, Y., Ritter, D., Bahir, G., Cohen, S. and Serling, J. (1995) Measurement of the Minority Carrier Mobility in the Base of Heterojunction Bipolar Transistors Using a Magneto Transport Method. Applied Physics Letters, 67, 1883-1884.
https://doi.org/10.1063/1.114364
[62]  Kurnick, S.W. and Zitter, R.N. (1956) Photoconductive and Photoelectromagnetic Effects in InSb. Journal of Applied Physics, 27, 278-285.
https://doi.org/10.1063/1.1722357
[63]  Sze, S.M. and Ng Kwok, K. (2007) Physics of Semiconductors Devices. 3rd Edition, John Wiley and Sons, Hoboken.
[64]  Lévy F. (1995) Traité des Matériaux N 18, Physique et Technologie des Semi-conducteurs. Presses Polytechniques et Universitaires Romandes.
[65]  Furlan, J. and Amon, S. (1985) Approximation of the Carrier Generation Rate in Illuminated Silicon. Solid-State Electronics, 28, 1241-1243.
https://doi.org/10.1016/0038-1101(85)90048-6
[66]  Paternoster, G., et al. (2013) Back-Contact Vertical Junction Silicon Solar Cells for Concentrating Photovoltaics. 28th European Photovoltaic Solar Energy Conference and Exhibition, Paris, 672-675.
[67]  Cuevas, A., Fossum, J.G. and Young, R.T. (1983) Influence of the Dopant Density Profile on Minority-Carrier Current in Shallow, Heavily Doped Emitters of Silicon Bipolar Devices. Solid-State Electronics, 28, 247-254.
https://doi.org/10.1016/0038-1101(85)90005-X
[68]  Agarwala, A. and Tewary, V.K. (1980) Response of a Silicon p-n Solar Cell to High Intensity Light. Journal of Applied Physics D: Applied Physics, 13, 1885-1898.
https://doi.org/10.1088/0022-3727/13/10/018
[69]  Mane, R., et al. (2017) Minority Carrier Diffusion Coefficient D*(B, T): Study in Temperature on a Silicon Solar Cell under Magnetic Field. Energy and Power Engineering, 9, 1-10.
https://doi.org/10.4236/epe.2017.91001
[70]  Kosso, A.M.M., Thiame, M., Traore, Y., Diatta, I., Ndiaye, M., Habiboullah, L., Ly, I. and Sissoko, G. (2018) Study of a Silicon Solar Cell under Constant Monochromatic Illumination: Influence of Both, Temperature and Magnetic Field. Journal of Scientific and Engineering Research, 5, 259-269.
[71]  Diouf, S., Ndiaye, M., Thiam, N., Traore, Y., Ba, M.L., Diatta, I., Diouf, M.S., Mballo, O., Thiam, A., Ly, I. and Sissoko, G. (2019) Influence of Temperature and Frequency on Minority Carrier Diffusion Coefficient in a Silicon Solar Cell under Magnetic Field. Energy and Power Engineering, 11, 355-361.
https://doi.org/10.4236/epe.2019.1110023
[72]  Berman, R. (1951) Thermal Conductivity of Dielectric Crystals: The “Umklapp” Process. Nature, 168, 277-280.
https://doi.org/10.1038/168277a0
[73]  Kittel, C. (1998) Physique de l’état solide. 7th Edition, 123-126.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413