The paper mainly focuses on the digital pulse width
modulation (DPWM) control techniques for high performance power electronic
circuit design. The problem to be solved in this study addresses the DPWM
converter design for DC to DC conversion process. The control techniques have
been utilized the Fuzzy Logic Rules Base method for proposed SIMULINK model of
high performance power electronic circuit. The analytical calculations for real
circuit design have been completed based on the mathematical modeling of the
system. The results from the developed SIMULINK model confirm the target
specifications of the high performance condition for power electronic circuit
which was met the objective of this study. The numerical results have been
carried out with the help of MATLAB/SIMULINK.
References
[1]
Tanaka, T., Ninomiya, T. and Harada, K. (1989) Random-Switching Control in DC-to-DC Converters. 20th Annual IEEE Power Electronics Specialists Conference, Milwaukee, USA, 500-507.
[2]
Boudjerda, N., Melit, M., Nekhoul, B., El khamlichi Drissi, K., and Kerroum, K. (2008) Spread Spectrum in DC-DC Full Bridge Voltage Converter by a Dual Randomized PWM Scheme. IEEE International Symposium on Electromagnetic Compatibility (EMC Europe 2008), Hamburg, Germany, 8-12 September 2008, 1-6.
https://doi.org/10.1109/EMCEUROPE.2008.4786894
[3]
Tse, K., Chung, H., Hui, S. and So, H. (2000) A Comparative Investigation on the Use of Random Modulation Schemes for DC/DC Converters. IEEE Transactions on Industrial Electronics, 47, 253-263. https://doi.org/10.1109/41.836340
[4]
Dousoky, G.M., Shoyama, M. and Ninomiya, T. (2011) FPGA-Based Spread-Spectrum Schemes for Conducted-Noise Mitigation in DC-DC Power Converters: Design, Implementation, and Experimental Investigation. IEEE Transactions on Industrial Electronics, 58, 429-435. https://doi.org/10.1109/TIE.2010.2049708
[5]
Karaca, T. and Auer, M. (2018) Digital Pulse-Width Modulator with Spread-Spectrum Emission Reduction. Elektrotechnik & Informationstechnik, 135, 48–53.
https://doi.org/10.1007/s00502-017-0577-0
[6]
Pascual, C., Song, Z., Krein, P.T., Sarwate, D.V., Midya, P. and Roeckner, W.J. (2003) High-Fidelity PWM Inverter for Audio Amplication Based on Real-Time DSP. IEEE Transactions on Power Electronics, 18, 473-485.
https://doi.org/10.1109/TPEL.2002.807102
[7]
Nguyen, K.C. and Sarwate, D.P. (2006) Up-Sampling and Natural Sample Value Computation for Digital Pulse Width Modulators. 40th Annual Conference on Information Sciences and Systems, Princeton, New Jersey, 22-24 March 2006, 1096-1101. https://doi.org/10.1109/CISS.2006.286629
[8]
Marco, L., Poveda, A., Alarcon, E. and Maksimovic, D. (2006) Bandwidth Limits in PWM Switching Amplifiers. IEEE Int. Symp. Circuits Syst., Island of Kos, Greece, May 2006, 5323-5326.
[9]
Deng, H., Helle, L., Bo, Y. and Larsen, K. (2009) A General Solution for Theoretical Harmonic Components of Carrier Based PWM Schemes. 24th Annual IEEE Appl. Power Electron. Conf. Expo., Washington, DC, 15-19 February 2009, 698-1703.
https://doi.org/10.1109/APEC.2009.4802898
[10]
Krishna, T.M., Veni, K.K., Babu, G.S., Sushma, D. and Harish, C. (2019) Performance Evaluation of Induction Motor for Unipolar and Bipolar Pulse Width Modulation Techniques. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8, 3626-3629. https://doi.org/10.35940/ijitee.J9793.0881019