全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

P(VDF-TrFE)聚合物在声发射传感器方面的应用
Application of P(VDF-TrFE) Copolymer in Acoustic Emission Sensor

DOI: 10.12677/JSTA.2020.82004, PP. 34-44

Keywords: P(VDF-TrFE),退火温度,介电性能,压电性能,声发射
P(VDF-TrFE)
, Annealed Temperatures, Dielectric, Piezoelectric, Acoustic Emission

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究聚(偏氟乙烯-三氟乙烯) (P(VDF-TrFE))聚合物对声发射信号接收及传感性能的影响,采用流延法制备了P(VDF-TrFE)薄膜,系统地比较了经不同退火温度处理的P(VDF-TrFE)聚合物的结晶度和电学性能,并建立了一种快速测试P(VDF-TrFE)聚合物薄膜声发射响应性能的方法。结果表明:随退火温度升高,P(VDF-TrFE)聚合物结晶度和介电常数逐渐增加。在电场200 MV/m下,经150℃退火处理的薄膜压电应变常数最大,其值为24.5 pC/N。提高退火温度同样有利于薄膜的声发射传感性能,其接收信号峰幅值可达72.2 mV。这为PVDF基氟聚合物在声发射传感器方面的应用提供了参考。
In order to study the effect of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer on the acoustic emission (AE) signal receiving and sensing performance, P(VDF-TrFE) films were prepared by solution casting method. The crystallinity and electrical properties of the P(VDF-TrFE) films annealed at different temperatures were systematically compared, and a method for quickly testing the acoustic emission response performance of P(VDF-TrFE) films was established. The results show that the crystallinity and dielectric constant of P(VDF-TrFE) copolymer enhance with the increase of annealed temperature. Under the electric field of 200 MV/m, the piezoelectric coefficient of the film annealed at 150?C is the largest, with a value of 24.5 pC/N. Increasing annealed temperature is also beneficial to the acoustic emission sensing performance of the film, and the peak amplitude of the received signal can reach 72.2 mV. This provides a reference for the application of PVDF-based fluoropolymer in acoustic emission sensors.

References

[1]  Kassa, H.K., Cai, R., Marrani, A., Nysten, B., Hu, Z.J. and Jonas, A.M. (2003) Structure and Ferroelectric Properties of Nanoimprinted Poly(vinylidene fluoride-ran-trifluoroethylene). Macromolecules, 46, 8569-8579.
https://doi.org/10.1021/ma401745t
[2]  Yang, L.Y., Li, X.Y., Allahyarov, E., Philip, L., Taylor, Q.M., Zhang, Q.M. and Zhu, L. (2013) Novel Polymer Ferroelectric Behavior via Crystal Isomorphism and the Nanoconfinement Effect. Polymer, 54, 1709-1728.
https://doi.org/10.1016/j.polymer.2013.01.035
[3]  Ohigashi, H., Koga, K., Suzuki, M., Nakanishi, T., Kimura, K. and Hashimoto, N. (1984) Piezoelectric and Ferroelectric Properties of P(VDF-TrFE) Copolymers and Their Application to Ultrasonic Transducers. Ferroelectrics, 60, 263-276.
https://doi.org/10.1080/00150198408017527
[4]  Chinya, I., Sasmal, A., Avijit, P. and Sen, S. (2019) Flexible Piezoelectric Energy Harvesters Using Different Architectures of Ferrite Based Nanocomposites. CrystEngComm, 21, 3478-3488.
https://doi.org/10.1039/C9CE00406H
[5]  Naber, R.C.G., Tanase, C., Blom, P.W.M., Gelinck, G.H., Marsman, A.W., Touwslager, F.J., Setayesh, S. and Deleeuw, D.M. (2005) High-Performance Solution-Processed Polymer Ferroelectric Field-Effect Transistors. Nature Materials, 4, 243-248.
https://doi.org/10.1038/nmat1329
[6]  Li, X.Y. and Kan, E.C. (2010) A Wireless Low-Range Pressure Sensor Based on P(VDF-TrFE) Piezoelectric Resonance. Sensors and Actuators A: Physical, 163, 457-463.
https://doi.org/10.1016/j.sna.2010.08.022
[7]  Dang, Z.M., Yuan, J.K., Yao, S.H. and Liao, R.J. (2013) Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage. Advanced Materials, 25, 6334-6365.
https://doi.org/10.1002/adma.201301752
[8]  Chiou, Y.D., Tsai, D.S., Lam, H.H., Chang, C.H., Lee, K.Y. and Huang, Y.S. (2013) Cycle Stability of the Electrochemical Capacitors Patterned with Vertically Aligned Carbon Nanotubes in an LiPF6-Based Electrolyte. Nanoscale, 17, 8122-8129.
https://doi.org/10.1039/c3nr01980b
[9]  Ameduri, B. (2009) From Vinylidene Fluoride (VDF) to the Applications of VDF Containing Polymers and Copolymers: Recent Developments and Future Trends. Chemical Reviews, 109, 6632-6686.
https://doi.org/10.1021/cr800187m
[10]  Nasef, M.M., Saidi, H. and Dahlan, K.Z.M. (2002) Investigation of Electron Irradiation Induced-Changes in Poly(vinylidene fluoride) Films. Polymer Degradation and Stability, 75, 85-92.
https://doi.org/10.1016/S0141-3910(01)00206-3
[11]  Li, Q. and Wang, Q. (2016) Ferroelectric Polymers and Their Energy-Related Applications. Macromolecular Chemistry and Physics, 217, 1228-1244.
https://doi.org/10.1002/macp.201500503
[12]  Schulze, R., Heinrich, M., Nossol, P., Forke, R., Sborikas, M., Tsapkolenko, A., Billep, D., Wegener, M., Kroll, L. and Gessner, T. (2014) Piezoelectric P(VDF-TrFE) Transducers Assembled with Micro Injection Molded Polymers. Sensors and Actuators A, 208, 159-165.
https://doi.org/10.1016/j.sna.2013.12.032
[13]  任广义, 蔡凡一, 郑建明, 徐春叶. P(VDF-TrFE)纳米纤维薄膜的柔性压力传感器[J]. 功能高分子学报, 2012, 25(2): 109-113.
[14]  Li, C.Y., Wu, P.M., Lee, S., Gorton, A., Schulz, M.J. and Ahn, C.H. (2008) Flexible Dome and Bump Shape Piezoelectric Tactile Sensors Using PVDF-TrFE Copolymer. Journal of Microelectromechanical Systems, 17, 334-341.
https://doi.org/10.1109/JMEMS.2007.911375
[15]  Chiu, Y.Y., Lin, W.Y., Wang, H., Huang, S.B. and Wu, M. (2013) Development of a Piezoelectric Polyvinylidene Fluoride (PVDF) Polymer-Based Sensor Patch for Simultaneous Heartbeat and Respiration Monitoring. Sensors and Actuators A: Physical, 189, 328-334.
https://doi.org/10.1016/j.sna.2012.10.021
[16]  Or, S.W., Chan, H.L.W. and Choy, C.L. (2000) P(VDF-TrFE) Copolymer Acoustic Emission Sensors. Sensors and Actuators A (Physical), 80, 237-241.
https://doi.org/10.1016/S0924-4247(99)00305-2
[17]  Caneva, C., De Rosa, I.M. and Sarasini, F. (2006) Damage Mechanisms in Loaded Aramid Composites by Means of Embedded PVDF Acoustic Emission Sensors. Advanced Materials Research, 13-14, 337-342.
https://doi.org/10.4028/www.scientific.net/AMR.13-14.337
[18]  Park, J.M., Kong, J.W., Kim, D.S and Yoon, D.J. (2005) Nondestructive Damage Detection and Interfacial Evaluation of Single-Fibers/Epoxy Composites Using PZT, PVDF and P(VDF-TrFE) Copolymer Sensors. Composites Science and Technology, 65, 241-256.
https://doi.org/10.1016/j.compscitech.2004.07.006
[19]  Caneva, C., De Rosa, I.M. and Sarasini, F. (2008) Monitoring of Impacted Aramid-Reinforced Composites by Embedded PVDF Acoustic Emission Sensors. Strain, 44, 308-316.
https://doi.org/10.1111/j.1475-1305.2007.00374.x
[20]  Liu, Y., Aziguli, H., Zhang, B., Xu, W.H., Lu, W.C., Bernholc, J. and Wang, Q. (2018) Ferroelectric Polymers Exhibiting Behaviour Reminiscent of a Morphotropic Phase Boundary. Nature, 562, 96-100.
https://doi.org/10.1038/s41586-018-0550-z
[21]  Gregorio, R. (2006) Determination of the α, β, and γ Crystalline Phases of Poly(vinylidene fluoride) Films Prepared at Different Conditions. Applied Polymer, 100, 3272-3279.
https://doi.org/10.1002/app.23137
[22]  Koga, K., Nakano, N. and Hattori, T. (1990) Crystallization, Field-Induced Phase Transformation, Thermally Induced Phase Transition, and Piezoelectric Activity in P(vinylidene fluoride-TrFE) Copolymers with High Molar Content of Vinylidene Fluoride. Journal of Applied Physics, 67, 965.
https://doi.org/10.1063/1.345706
[23]  Wang, Z.M., Zhang, Z.C. and Chung, T.C.M. (2006) High Dielectric VDF/TrFE/CTFE Terpolymers Prepared by Hydrogenation of VDF/CTFE Copolymers: Synthesis and Characterization. Macromolecules, 39, 4268-427.
https://doi.org/10.1021/ma060738m

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133