全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

果汁中克菌丹农药残留吸收光谱检测
Detection of Captan Pesticide Residue Absorption Spectrum in Fruit Juice

DOI: 10.12677/AAC.2020.102008, PP. 52-58

Keywords: 农药残留,克菌丹,吸收光谱,导数光谱
Pesticide Residues
, Captan, Absorption Spectrum, Derivative Spectrum

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用紫外可见分光光度计分别获取克菌丹农药和苹果汁–克菌丹农药混合溶液的吸收光谱,发现克菌丹农药及其与苹果汁混合溶液在279 nm处有明显的特征肩峰。对苹果汁–克菌丹农药的特征肩峰的吸光度与克菌丹农药的浓度进行偏最小二乘法线性拟合,建立了吸光度与药液浓度之间的预测模型函数,其相关系数为0.9907,平均回收率为99.6%,LOD (检出限)为0.0360 mg/mL,LOQ (定量限)为1.1999 mg/mL。对苹果汁–克菌丹农药的吸收光谱进行导数运算处理,得到混合药液的导数吸收光谱。与原混合溶液的吸收光谱相比较,苹果汁–克菌丹农药的导数光谱在297 nm处有明显的特征峰。拟合混合药液的浓度与导数光谱吸光度的函数关系,相关系数为0.9934,平均回收率为98.2%,LOD (检出限)为0.0098 mg/mL,LOQ (定量限)为0.0328 mg/mL。结果表明,采用吸收光谱法对苹果汁中的克菌丹农药残留进行直接检测与分析是快速和有效的,而基于导数吸收光谱的检测效果则更优。
The absorption spectra of Captan pesticide and apple juice-captan pesticide mixed solution were obtained by UV-visible spectrophotometer respectively. It was found that Captan pesticide and its mixed solution with apple juice had obvious characteristic shoulders at 279 nm. Partial least squares linear fitting was carried on the absorbance of the characteristic shoulder peaks of apple juice-captan pesticides and the concentration of captan pesticides, and a prediction model function was established between the absorbance and the concentration of the pesticide solution, the cor-relation coefficient (R) was 0.9907, the mean recovery (%) was 99.6%, LOD was 0.0360 mg/mL, LOQ was 1.1999 mg/mL. Derivative processing was performed on the absorption spectrum of the apple juice-captan pesticide to obtain the derivative absorption spectrum of the mixed solution. Compared with the absorption spectrum of the original mixed solution, the derivative spectrum of the apple juice-captan pesticide had an obvious characteristic peak at 297 nm. Fitting the relation-ship between the concentration of the mixed solution and the absorbance of the derivative spec-trum, the correlation coefficient (R) was 0.9934, the mean recovery (%) was 98.2%, LOD was 0.0098 mg/mL, LOQ was 0.0328 mg/mL. The results show that the direct detection and analysis of captan pesticide residues in apple juice by absorption spectroscopy was fast and effective, while the detection effect based on derivative absorption spectroscopy was better.

References

[1]  刘伟, 姬志勤, 李智文, 等. 克菌丹在苹果园土壤中的代谢研究[J]. 西北农业学报, 2006, 15(1): 85-87.
[2]  吕建祎, 张敏, 金红蕾, 等. 环境致癌物诱导慢性炎症致肺癌发生发展的研究进展[J]. 生物化学与生物物理进展, 2014(1): 41-51.
[3]  Agne?a, P., et al. (2015) Multifamily Determination of Pesticide Residues in Soya-Based Nutraceutical Products by GC/MS-MS. Food Chemistry, 173, 796-807. https://doi.org/10.1016/j.foodchem.2014.10.100
[4]  李硕, 汪善勤, 张美琴. 基于可见近红外光谱比较主成分回归、偏最小二乘回归和反向传播神经网络对土壤氮的预测研究[J]. 光学学报, 2012, 32(8): 830001-830301.
[5]  Huang, J., Chen, J., Lu, S., et al. (2017) Measurement of Chlorobenzenes and Chlorophenols in Fly Ashes from MSWI Using GC-ECD and LC-MS/MS. Chinese Journal of Environmental Engineering, 11, 1293-1299.
[6]  Ren, Q., et al. (2017) Chemical Identification and Quality Evaluation of Lycopus lucidus Turcz by UHPLC-Q-TOF-MS and HPLC-MS/MS and Hierarchical Clustering Analysis. Biomedical Chromatography, 31, e3867. https://doi.org/10.1002/bmc.3867
[7]  宋爱华. 全自动生化法检测25-羟基维生素D的方法学评估[J]. 标记免疫分析与临床, 2015, 22(10): 1051-1055.
[8]  庞向东, 成晓琼, 刘贵秀, 等. 基于紫外-可见吸收光谱法检测药物中地奥司明[J]. 现代化工, 2019(7): 220-223.
[9]  季仁东. 橙汁中多菌灵农药残留吸收光谱特征研究[J]. 光谱学与光谱分析, 2014, 34(3): 721-724.
[10]  王晓燕, 季仁东, 陈仁文. 异丙甲草胺农药残留吸收光谱检测方法研究[J]. 光谱学与光谱分析, 2019, 39(1): 180-184.
[11]  余磊, 彭湘君, 李银保, 等. 原子吸收光谱法测定茶叶中7种微量元素[J]. 光譜實驗室, 2006, 23(5): 962-965.
[12]  江海军, 陈力, 张淑仪. 激光扫描红外热波成像技术在无损检测中的应用[J]. 无损检测, 2014, 36(12): 20-22.
[13]  陈晓伟, 殷高方, 赵南京, 等. 浊度干扰下硝酸盐浓度紫外导数光谱检测方法研究[J]. 光谱学与光谱分析, 2019, 39(9): 2912-2916.
[14]  冯蕾, 陈锡芹, 程祖顺, 等. 二阶导数光谱法定量分析凝灰岩石粉对不同侧链长度聚羧酸减水剂吸附性[J]. 光谱学与光谱分析, 2019, 39(9): 2788-2793.
[15]  Tian, Y., Wang, M., Wang, C., et al. (2017) Monitoring Quality of Frying Oil by First Order Derivative Spectrum Ultraviolet Spectroscopy. Journal of the Chinese Cereals & Oils Association, 32, 122-126.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133