全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于物品相似度的异类商品推荐算法研究
Research on Heterogeneous Product Recommendation Algorithm Based on Item Similarity

DOI: 10.12677/HJDM.2020.102011, PP. 111-117

Keywords: 推荐算法,异类商品,物品相似度
Recommendation Algorithm
, Heterogeneous Products, Item Similarity

Full-Text   Cite this paper   Add to My Lib

Abstract:

现有的推荐算法大多是基于同类商品进行推荐,容易形成“信息茧房”。为了解决同类商品推荐的局限性,将推荐算法引申到不同类别的商品推荐之中,本文提出了一种基于物品相似度的异类商品推荐算法。在应用了物品相似度的基础上,提出交叉相关推荐理论,解决了目标商品与推荐商品集异构推荐的问题。最后,本文从天池淘宝穿衣搭配数据集中提取商品数据,通过对所提出的算法设计程序语言,应用到数据集中进行分析。根据所得到的实验结果,该算法得到的推荐成功率较高,推荐效果较好。
Most of the existing recommendation algorithms are based on the recommendation of similar products, which can easily lead to “information cocoon rooms”. In order to solve the limitations of similar product recommendation, the recommendation algorithm is extended to different catego-ries of product recommendation. This paper proposes a heterogeneous product recommendation algorithm based on item similarity. Based on the application of item similarity, a cross-correlation recommendation theory is proposed to solve the problem of heterogeneous recommendation of target products and recommended product sets. Finally, this article extracts the product data from the Tianchi Taobao clothing matching data set, and applies the proposed algorithm to the pro-gramming language to analyze the data set. According to the obtained experimental results, the al-gorithm has a high recommendation success rate and a good recommendation effect.

References

[1]  杨博, 赵鹏飞. 推荐算法综述[J]. 山西大学学报(自然科学版), 2011, 34(3): 337- 350.
[2]  江海洋. 基于评论挖掘和用户偏好学习的评分预测协同过滤[J]. 计算机应用研究, 2010, 27(12): 4430-4432.
[3]  李京, 姜卫, 张跟鹏, 宋世延. 基于电子商务的个性化推荐系统研究[J]. 计算机与数字工程, 2011, 39(7): 93-97.
[4]  崔睿宇, 杨怀洲. 电子商务环境下多元个性化服务推荐研究[J]. 智能计算机与应用, 2019, 9(1): 173-177.
[5]  Fahandar, M.A. and Huellermeier, E. (2017) Learning to Rank Based on Analogical Reasoning. Springer Berlin Heidelberg, 86-93.
[6]  Raghuwanshi, S.K. and Pateriya, R.K. (2019) Collaborative Filtering Techniques in Recommendation Systems. In: Shukla, R., Agrawal, J., Sharma, S., Singh, T.G., Eds., Data, Engineering and Applications, Springer, Singapore.
[7]  Bag, S., Kumar, S. and Tiwari, M. (2019) An Efficient Recommendation Generation Using Rele-vant Jaccard Similarity. Information Sciences, 483, 53-64.
https://doi.org/10.1016/j.ins.2019.01.023
[8]  Luce, R.D. and Raiffa, H. (1957) Games and Decisions: Introduction and Critical Survey. Wiley, New York, NY.
[9]  Brinker, K., Fuernkranz, J. and Huellermeier, E. (2006) A Unified Model for Multilabel Classification and Ranking. European Conference on Artificial Intelligence (ECAI-06), 2006, 489-493.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133