全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种更快捷的轻量级人脸识别模型
A Faster Lightweight Face Recognition Model

DOI: 10.12677/CSA.2020.104068, PP. 659-664

Keywords: 深度学习,人脸识别,轻量级
Deep Learning
, Face Recognition, Lightweight

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着基于深度学习的人脸识别算法的发展和应用,人脸识别算法已经可以运用在计算资源充足的设备上并取得很高的精度和较快的速度,但是在计算资源受限设备上的应用有诸多困难。基于深度学习的人脸识别模型有着更好的识别精度,但是大多数基于深度学习的模型均需要大量的计算资源来支持运行。本文针对这一问题,设计出一个占用少量计算资源的基于深度学习算法的轻量级网络模型Lite-Inception-ResNet,该模型基于具有良好性能的Inception-ResNet模型,在保持原模型良好性能的基础上对卷积核和网络架构进行了优化和重新设计,并选用了性能更好的激活函数。在VGGFace2和LFW上的实验表明,新模型可以在LFW数据集上仅降低0.1%正确率的情况下减少88.2%的参数量和76.5%的计算量,使该模型可以较好地应用于计算资源较少的设备上。
With the development and application of deep learning-based approaches, face recognition algorithms have already been used on devices with sufficient computing resources and achieved high accuracy and fast speed. Face recognition models based on deep learning have better recognition accuracy, but requiring a large amount of computing resources. Aiming to this problem, this paper designs a model called Lite-Inception-ResNet, which is a lightweight network model based on deep learning algorithms and requires much fewer computing resources. The proposed model is based on the Inception-ResNet model and improved in network architecture and activation functions. Experiments on VGGFace2 and LFW show that the Lite-Inception-ResNet model can reduce the amount of parameters by 88.2% and the amount of calculation by 76.5% with only a 0.1% accuracy reduction, making the model more suitable for devices with less computing resources.

References

[1]  Han, S., Mao, H. and Dally, W.J. (2015) Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding. arXiv Preprint arXiv:1510.00149.
[2]  Howard, A., Sandler, M., Chu, G., et al. (2019) Searching for Mobile Net v3. Proceedings of the IEEE International Conference on Computer Vision, 1314-1324.
https://doi.org/10.1109/ICCV.2019.00140
[3]  Ma, N., Zhang, X., Zheng, H.T., et al. (2018) Shuf-flenet v2: Practical Guidelines for Efficient CNN Architecture Design. Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 116-131.
https://doi.org/10.1007/978-3-030-01264-9_8
[4]  Szegedy, C., Ioffe, S., Vanhoucke, V., et al. (2017) Incep-tion-v4, Inception-Resnet and the Impact of Residual Connections on Learning. Thirty-First AAAI Conference on Arti-ficial Intelligence, San Francisco, CA, 4-9 February 2017.
[5]  Taigman, Y., Yang, M., Ranzato, M.A., et al. (2014) Deepface: Closing the Gap to Human-Level Performance in Face Verification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1701-1708.
https://doi.org/10.1109/CVPR.2014.220
[6]  Parkhi, O.M., Vedaldi, A. and Zisserman, A. (2015) Deep Face Recognition.
https://doi.org/10.5244/C.29.41
[7]  Wang, F., Cheng, J., Liu, W., et al. (2018) Additive Margin Softmax for Face Verification. IEEE Signal Processing Letters, 25, 926-930.
https://doi.org/10.1109/LSP.2018.2822810
[8]  Wang, H., Wang, Y., Zhou, Z., et al. (2018) Cosface: Large Margin Cosine Loss for Deep Face Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5265-5274.
https://doi.org/10.1109/CVPR.2018.00552
[9]  Deng, J., Guo, J., Xue, N., et al. (2019) Arcface: Additive Angular Margin Loss for Deep Face Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4690-4699.
https://doi.org/10.1109/CVPR.2019.00482
[10]  Christian, S., Wei, L., Yangqing, J., et al. (2015) Going Deeper with Convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-9.
[11]  He, K., Zhang, X., Ren, S., et al. (2016) Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, 26 June-1 July 2016, 770-778.
https://doi.org/10.1109/CVPR.2016.90
[12]  He, K., Zhang, X., Ren, S., et al. (2015) Delving Deep into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification. Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 1026-1034.
https://doi.org/10.1109/ICCV.2015.123
[13]  Maas, A.L., Hannun, A.Y. and Ng, A.Y. (2013) Rectifier Nonlinear-ities Improve Neural Network Acoustic Models. Proceedings of ICML, 30, 3.
[14]  Cao, Q., Shen, L., Xie, W., et al. (2018) Vggface2: A Dataset for Recognising Faces across Pose and Age. 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15-19 May 2018, 67-74.
https://doi.org/10.1109/FG.2018.00020
[15]  Huang, G.B., Mattar, M., Berg, T., et al. (2008) Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments.
[16]  Huang, G.B. and Learned-Miller, E. (2014) Labeled Faces in the Wild: Updates and New Reporting Procedures. Technical Report, Department of Computer Science, University of Massachusetts, Amherst, MA.
[17]  Zhang, K., Zhang, Z., Li, Z., et al. (2016) Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks. IEEE Signal Processing Letters, 23, 1499-1503.
https://doi.org/10.1109/LSP.2016.2603342
[18]  Abadi, M., Agarwal, A., Barham, P., et al. (2016) Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv Preprint arXiv:1603.04467.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133