|
一种更快捷的轻量级人脸识别模型
|
Abstract:
[1] | Han, S., Mao, H. and Dally, W.J. (2015) Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding. arXiv Preprint arXiv:1510.00149. |
[2] | Howard, A., Sandler, M., Chu, G., et al. (2019) Searching for Mobile Net v3. Proceedings of the IEEE International Conference on Computer Vision, 1314-1324. https://doi.org/10.1109/ICCV.2019.00140 |
[3] | Ma, N., Zhang, X., Zheng, H.T., et al. (2018) Shuf-flenet v2: Practical Guidelines for Efficient CNN Architecture Design. Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 116-131.
https://doi.org/10.1007/978-3-030-01264-9_8 |
[4] | Szegedy, C., Ioffe, S., Vanhoucke, V., et al. (2017) Incep-tion-v4, Inception-Resnet and the Impact of Residual Connections on Learning. Thirty-First AAAI Conference on Arti-ficial Intelligence, San Francisco, CA, 4-9 February 2017. |
[5] | Taigman, Y., Yang, M., Ranzato, M.A., et al. (2014) Deepface: Closing the Gap to Human-Level Performance in Face Verification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1701-1708.
https://doi.org/10.1109/CVPR.2014.220 |
[6] | Parkhi, O.M., Vedaldi, A. and Zisserman, A. (2015) Deep Face Recognition. https://doi.org/10.5244/C.29.41 |
[7] | Wang, F., Cheng, J., Liu, W., et al. (2018) Additive Margin Softmax for Face Verification. IEEE Signal Processing Letters, 25, 926-930. https://doi.org/10.1109/LSP.2018.2822810 |
[8] | Wang, H., Wang, Y., Zhou, Z., et al. (2018) Cosface: Large Margin Cosine Loss for Deep Face Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 5265-5274.
https://doi.org/10.1109/CVPR.2018.00552 |
[9] | Deng, J., Guo, J., Xue, N., et al. (2019) Arcface: Additive Angular Margin Loss for Deep Face Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4690-4699.
https://doi.org/10.1109/CVPR.2019.00482 |
[10] | Christian, S., Wei, L., Yangqing, J., et al. (2015) Going Deeper with Convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-9. |
[11] | He, K., Zhang, X., Ren, S., et al. (2016) Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, 26 June-1 July 2016, 770-778.
https://doi.org/10.1109/CVPR.2016.90 |
[12] | He, K., Zhang, X., Ren, S., et al. (2015) Delving Deep into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification. Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 1026-1034.
https://doi.org/10.1109/ICCV.2015.123 |
[13] | Maas, A.L., Hannun, A.Y. and Ng, A.Y. (2013) Rectifier Nonlinear-ities Improve Neural Network Acoustic Models. Proceedings of ICML, 30, 3. |
[14] | Cao, Q., Shen, L., Xie, W., et al. (2018) Vggface2: A Dataset for Recognising Faces across Pose and Age. 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15-19 May 2018, 67-74. https://doi.org/10.1109/FG.2018.00020 |
[15] | Huang, G.B., Mattar, M., Berg, T., et al. (2008) Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. |
[16] | Huang, G.B. and Learned-Miller, E. (2014) Labeled Faces in the Wild: Updates and New Reporting Procedures. Technical Report, Department of Computer Science, University of Massachusetts, Amherst, MA. |
[17] | Zhang, K., Zhang, Z., Li, Z., et al. (2016) Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks. IEEE Signal Processing Letters, 23, 1499-1503. https://doi.org/10.1109/LSP.2016.2603342 |
[18] | Abadi, M., Agarwal, A., Barham, P., et al. (2016) Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv Preprint arXiv:1603.04467. |