全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于矩阵分解和Meanshift聚类的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on Matrix Decomposition and Meanshift Clustering

DOI: 10.12677/CSA.2020.104067, PP. 649-658

Keywords: 可扩展性,矩阵分解,Meanshift聚类,协同过滤,用户冷启动问题,数据稀疏问题
Scalability
, Matrix Decomposition, Meanshift Clustering, Collaborative Filtering, User Cold Start Problem, Data Sparsity Problem

Full-Text   Cite this paper   Add to My Lib

Abstract:

可扩展性、数据的稀疏性及用户的冷启动问题是传统的协同过滤推荐算法所面临的主要问题。由此提出一种基于矩阵分解和Meanshift聚类的协同过滤推荐算法:首先将原始矩阵使用奇异值分解(SVD)方法进行矩阵分解,较好地对原始数据进行降维,然后使用Meanshift (均值漂移)聚类对所有的物品进行聚类,最后在聚类后的类别中结合改进的基于物品的协同过滤算法,进而减少邻居商品的搜索范围。此方法不仅提高了推荐速度,还良好地解决了用户冷启动问题及数据稀疏问题,在MovieLens 1M数据集上相比于传统的基于物品的协同过滤算法MAE值最多下降了4.52%。
Scalability, sparseness of data and cold start of users are the main problems faced by traditional collaborative filtering recommendation algorithms. A collaborative filtering recommendation algorithm based on matrix decomposition and Meanshift clustering was proposed. Firstly, the original matrix was decomposed by singular value decomposition (SVD) method, and the original data would be better reduced. Then Meanshift clustering applied to all items, and finally combined the improved item-based collaborative filtering algorithm in the clustered categories to reduce the search range of neighbors. This method not only improves the recommendation speed, but also solves the user’s cold start problem and data sparse problem properly. Compared with the tradi-tional item-based collaborative filtering algorithm, the MAE value of this method on MovieLens 1M data set is reduced by 4.52%.

References

[1]  翁小兰, 王志坚. 协同过滤推荐算法研究进展[J]. 计算机工程与应用, 2018, 54(1): 5-31.
[2]  冷亚军, 陆青, 梁昌勇. 协同过滤推荐技术综述[J]. 模式识别与人工智能, 2014, 27(8): 720-734.
[3]  乔雨, 李玲娟. 推荐系统冷启动问题解决策略研究[J]. 计算机技术与发展, 2018, 28(2): 83-87.
[4]  杨秀梅, 孙咏, 王美吉, 等. 新闻推荐系统中用户冷启动问题的研究[J]. 小型微型计算机系统, 2016, 37(3): 479-482.
[5]  高玉凯, 王新华, 郭磊, 等. 一种基于协同矩阵分解的用户冷启动推荐算法[J]. 计算机研究与发展, 2017, 54(8): 1813-1823.
[6]  杨圩生, 罗爱民, 张萌萌. 基于信任环的用户冷启动推荐[J]. 计算机科学, 2013, 40(11): 363-366.
[7]  李聪. 电子商务协同过滤可扩展性研究综述[J]. 现代图书情报技术, 2010(11): 37-44.
[8]  Birtolo, C. and Ronca, D. (2013) Advances in Clustering Collaborative Filtering by Means of Fuzzy C-Means and Trust. Expert Systems with Applications, 40, 6997-7009.
https://doi.org/10.1016/j.eswa.2013.06.022
[9]  Sarwar, B.M., Karypis, G., Konstan, J., et al. (2002) Recommender Systems for Large-Scale E-Commerce: Scalable Neighborhood Formation Using Clustering. Proceedings of the International Conference on Computer and Information Technology, Hong Kong, 158-167.
[10]  邓爱林, 左子叶, 朱扬勇. 基于项目聚类的协同过滤推荐算法[J]. 小型微型计算机系统, 2004, 25(9): 1665-1670.
[11]  林建辉, 严宣辉, 黄波. 基于SVD与模糊聚类的协同过滤推荐算法[J]. 计算机系统应用, 2016, 25(11): 156-163.
[12]  王伟, 杨宁, 李丽华, 等. 基于SVD的K-means聚类协同过滤算法[J]. 微计算机信息, 2012, 28(8): 139-141.
[13]  金刚, 艾丽蓉. 基于项目属性和云填充的协同过滤推荐算法[J]. 计算机应用, 2012, 32(3): 658-660.
[14]  高风荣, 杜小勇, 王珊. 一种基于稀疏矩阵划分的个性化推荐算法[J]. 微电子学与计算机, 2004, 21(2): 58-62.
[15]  罗小桂, 河雁. 矩阵奇异值分解在计算技术中的应用[J]. 计算机与现代与现代化, 2006(6):67-68.
[16]  Comaniciu, D. and Meer, P. (2002) Mean Shift: A Robust Approach toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 603-619.
https://doi.org/10.1109/34.1000236
[17]  Sarwar, B., Karypis, G., Konstan, J., et al. (2001) Item-Based Collaborative Filtering Recommendation Algorithms. Proceedings of the 10th International Conference on World Wide Web, Shanghai, 285-295.
https://doi.org/10.1145/371920.372071

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133