|
Pure Mathematics 2020
一类非连续Dirac算子解和特征值的渐近式
|
Abstract:
[1] | 朱俊逸. 常型Dirac算子的谱分解[J]. 郑州大学学报: 理学版, 2003, 35(1): 11-15. |
[2] | Levitan, B.M. and Sargsjan, I.S. (1991) Sturm-Liouville and Dirac Operator. Kluwer Academic Publishers, Dordrecht, 185-212. https://doi.org/10.1007/978-94-011-3748-5 |
[3] | 郝萍萍, 魏广生. 一类Dirac算子特征值的渐近式[J]. 山东大学学报:理学版, 2015, 50(2): 55-59. |
[4] | Freiling, G. and Yurko, V. (2001) Inverse Sturm-Liouville Problems and Their Applications. Nova Science Publishers, Huntington, NY. |
[5] | 魏朝颖, 魏广生. 非连续Dirac算子谱的分布及其逆谱问题[J]. 应用数学学报, 2014, 37(1): 170-177. |
[6] | Ozkan, A.S. and Amirov, R.Kh. (2011) An Interior Inverse Problem for the Impulsive Dirac Operator. Tamkang Journal of Mathematics, 42, 259-263. https://doi.org/10.5556/j.tkjm.42.2011.824 |
[7] | Horváth, M. (2001) On the Inverse Spectral Theory of Schr?dinger and Dirac Operators. American Mathematical Society Translations, 353, 4155-4171. https://doi.org/10.1090/S0002-9947-01-02765-9 |
[8] | 曹之江. 常微分算子[M]. 上海: 上海科技出版社, 1986: 65-85. |