全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类非连续Dirac算子解和特征值的渐近式
Asymptotic Solutions and Eigenvalues of a Class of Discontinuous Dirac Operators

DOI: 10.12677/PM.2020.104038, PP. 298-306

Keywords: Dirac算子,解,特征值,渐近式
Dirac Operator
, Solution, Eigenvalue, Asymptotics

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究定义在[0,π]区间上,在点a∈(0,π)具有跳跃条件的Dirac算子解和特征值的渐近性,给出了解和特征值的渐近式,并将所得结论拓展到n个跳跃点的情形。
In this paper, we study the asymptotics of the solutions and eigenvalues of Dirac operators defined on [0,π] with jump conditions at point a∈(0,π). The asymptotics of the solutions and eigenvalues were obtained, and the results to the case of n jump points were extended.

References

[1]  朱俊逸. 常型Dirac算子的谱分解[J]. 郑州大学学报: 理学版, 2003, 35(1): 11-15.
[2]  Levitan, B.M. and Sargsjan, I.S. (1991) Sturm-Liouville and Dirac Operator. Kluwer Academic Publishers, Dordrecht, 185-212.
https://doi.org/10.1007/978-94-011-3748-5
[3]  郝萍萍, 魏广生. 一类Dirac算子特征值的渐近式[J]. 山东大学学报:理学版, 2015, 50(2): 55-59.
[4]  Freiling, G. and Yurko, V. (2001) Inverse Sturm-Liouville Problems and Their Applications. Nova Science Publishers, Huntington, NY.
[5]  魏朝颖, 魏广生. 非连续Dirac算子谱的分布及其逆谱问题[J]. 应用数学学报, 2014, 37(1): 170-177.
[6]  Ozkan, A.S. and Amirov, R.Kh. (2011) An Interior Inverse Problem for the Impulsive Dirac Operator. Tamkang Journal of Mathematics, 42, 259-263.
https://doi.org/10.5556/j.tkjm.42.2011.824
[7]  Horváth, M. (2001) On the Inverse Spectral Theory of Schr?dinger and Dirac Operators. American Mathematical Society Translations, 353, 4155-4171.
https://doi.org/10.1090/S0002-9947-01-02765-9
[8]  曹之江. 常微分算子[M]. 上海: 上海科技出版社, 1986: 65-85.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133