全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于支持向量机和余弦相似度的故障诊断方法
Fault Diagnosis Methods Based on Support Vector Machine and Cosine Similarity

DOI: 10.12677/HJDM.2020.102014, PP. 136-142

Keywords: 支持向量机,余弦相似度,故障诊断方法
SVM
, Cosine Similarity, Fault Diagnosis Methods

Full-Text   Cite this paper   Add to My Lib

Abstract:

故障诊断是一种广泛应用于企业的工程技术,有效的故障诊断可以为企业节省大量的人力和物力的开销。传统的文本故障诊断大多采用余弦相似度算法,当匹配出错、数据靠后以及数据量较大时,往往无法满足客户的实时需求。因此,本文采用支持向量机算法对用户输入的故障描述文本语句进行粗划分,筛选出具有相似特征的大类。在此基础上,依据粗分类结果,进一步使用余弦相似度算法进行精确匹配,从而选取匹配相似度最高的故障产生原因和防治措施以反馈客户。实验结果表明,本文所提的故障诊断算法可以有效地进行故障诊断,为企业带来可观的经济效益。
Fault diagnosis is a kind of engineering technology widely used in enterprises. Effective fault diag-nosis can save a lot of expenses in manpower and material resources for the enterprise. Tradition-al text fault diagnosis mostly uses the cosine similarity algorithm. When the matching is wrong, the data falls behind, and the amount of data is large, it often fails to meet the real-time needs of cus-tomers. Therefore, this paper uses the support vector machine algorithm to coarsely divide the fault description text sentences input by the user to screen out the large categories with similar characteristics. Based on the rough classification results, this paper further uses the cosine similar-ity algorithm to perform accurate matching, so as to select the cause of the fault with the highest matching similarity and preventive measures to feedback customers. Experimental results show that the fault diagnosis algorithm proposed in this paper can effectively perform fault diagnosis and bring considerable economic benefits to the enterprise.

References

[1]  郑鹏, 刘海青, 等. 模糊聚合算子在医疗诊断中的应用[J]. 计算机工程与应用, 2001(24): 170-171.
[2]  Ding, W.-P., et al. (2006) Application of Fuzzy Logic Reasoning in Intelligent Assistant Diagnosis System of Electronic Patient Record. Journal of Nantong University (Natural Science), 4, 77-81.
[3]  胡寿松, 王源. 基于支持向量机的非线性系统故障诊断[J]. 控制与决策, 2001, 16(5): 617-620.
[4]  陈钦界. 基于机器学习的智能医疗诊断辅助方法研究[D]: [硕士学位论文]. 北京: 国防科学技术大学, 2017.
[5]  梁耀波. 智能医疗诊断系统的研究与实现[J]. 北京理工大学, 2016, 32(9): 81-83.
[6]  何凯. 支持向量机方法在智能医疗诊断系统中的应用与研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2007.
[7]  林予松, 梁璐, 崔勇, 等. 基于VSM权重改进算法的智能导医系统[J]. 计算机应用与软件, 2015, 32(9): 81-83.
[8]  徐奕枫, 刘利军, 黄青松, 等. 智能导医系统中TF-IDF权重改进算法研究[J]. 计算机工程与应用, 2017, 53(4): 238-243.
[9]  Li, X.Z., et al. (2019) Intelligent Diagnosis with Chinese Electronic Medical Records Based on Convolutional Neural Networks. BMC Bioinformatics, 20, 62.
https://doi.org/10.1186/s12859-019-2617-8
[10]  陈实. 神经网络及在中医智能诊断中的应用[J]. 电子技术与软件工程, 2019(20): 155-156.
[11]  Mitra, V., Wang, C.-J. and Banerjee, S. (2006) Text Classification: A Least Square Support Vector Machine Approach. Applied Soft Computing Journal, 7, 908-914.
https://doi.org/10.1016/j.asoc.2006.04.002
[12]  朱远平, 戴汝为. 基于svm决策树的文本分类器[J]. 模式识别与人工智能, 2005, 18(4): 412-416.
[13]  李毅. 基于SVM的文本分类应用研究[D]: [硕士学位论文]. 成都: 成都电子科技大学, 2014.
[14]  郭庆琳, 李艳梅, 唐琦. 基于VSM的文本相似度计算的研究[J]. 计算机应用与研究, 2008, 25(18): 3256-3258.
[15]  王茜. 基于电子病历的医疗诊断辅助系统设计与实现[D]: [硕士学位论文]. 郑州: 郑州大学, 2016.
[16]  宋安. 基于电子病历的医疗诊断模型的研究与应用[D]: [硕士学位论文]. 杭州: 浙江理工大学, 2017.
[17]  Mikolov, T., Sutskever, I., Chen, K., Corrado, G. and Dean, J. (2013) Distributed Representations of Words and Phrases and Their Compositionality. Advances in Neural Information Processing Systems, 26, 3111-3119.
[18]  黄承惠, 印鉴, 侯昉. 一种结合词项语义信息和TF-IDF方法的文本相似度量方法[J]. 计算机学报, 2011, 34(5): 856-863.
[19]  付德宇, 代成琴. 一个面向文本分类的中文特征词自动抽取方法[J]. 计算机工程与应用, 2006, 42(15): 165.
[20]  刘江华, 程君实, 等. 支持向量机训练算法综述[J]. 信息与控制, 2002, 31(1): 45-50.
[21]  Chang, C.-C. and Lin, C.-J. (2011) LIBSVM: A Library for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology, 2, 21-27.
https://doi.org/10.1145/1961189.1961199
[22]  张高祥. 基于SVM的文本信息过滤算法研究[D]: [硕士学位论文]. 长春: 吉林大学, 2016.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133