全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Design of Photonic Crystal Fiber Capable of Carrying Multiple Orbital Angular Momentum Modes Transmission

DOI: 10.4236/opj.2020.104005, PP. 49-63

Keywords: Fiber Optics Communication, Photonic Crystal Fiber, Orbital Angular Momentum Modes, Mode Effective Refraction Index

Full-Text   Cite this paper   Add to My Lib

Abstract:

For the traditional photonic crystal fibers with circular air holes, rectangular air holes are added to the fiber cladding. The periodic arrangement of the inner rectangular air holes allows the fiber structure to better match the annular mode field distribution of the vortex beam. The fiber structure was analyzed and calculated by COMSOL Multiphysics 5.4 finite element software, and the characteristics of fiber were analyzed, such as the dispersion, confinement loss, effective mode area and nonlinear coefficient. The results reveal that the photonic crystal fiber structure capable of carrying 50 orbital angular momentum (OAM) modes at the wavelength of 1.15 to 2.0 μm (850 nm). The effective refractive index difference Δneff between vector modes can reach 1 × 10-3, and larger difference can effectively separate the vector modes and improve the transmission performance of OAM modes. Moreover, the fiber has good performance, such as flat dispersion distribution of the low-order modes, low confinement loss below 10-9 dB·m-1, large effective mode field area and small nonlinear coefficient in the 850 nm wavelength range. Therefore, this fiber structure can be applied to the high-capacity communication system of fiber multiplexing OAM. In addition, the good characteristics of this fiber structure are of great significance for the transmission of vortex beam in fiber.

References

[1]  Lai, J.S., Wu, B. and Zhao, W.Y. (2014) Application and Analysis of Orbital Angular Momentum Technology in Optical Communication. Telecommunications Science, 30, 46-50.
[2]  Allen, L., Beijersbergen, M.W. and Spreeuw, R.J.C. (1992) Orbital Angular Momentum of Light and Transformation of Laguerre-Gaussian Laser Modes. Physical Review A, 45, 8185-8189.
https://doi.org/10.1103/PhysRevA.45.8185
[3]  Jia, D., Zhang, H. and Zhe, J. (2012) Optical Fiber Amplifiers for Space-Division Multiplexing. Frontiers of Optoelectronics, 5, 351-357.
https://doi.org/10.1007/s12200-012-0294-6
[4]  Qiao, W., Gao, S. and Lei, T. (2017) Transmission of Orbital Angular Momentum Modes in Grapefruit-Type Microstructure Fiber. Chinese Journal of Lasers, 44, 190-195.
https://doi.org/10.3788/CJL201744.0406002
[5]  Gregg, P., Kristensen, P. and Golowich, S.E. (2013) Stable Transmission of 12 OAM States in Air-Core Fiber. Cleo. IEEE, Maryland USA, 1-2.
https://doi.org/10.1364/CLEO_SI.2013.CTu2K.2
[6]  Brunet, C., Vaity, P. and Messaddeq, Y. (2014) Design, Fabrication and Validation of an OAM Fiber Supporting 36 States. Optics Express, 22, 26117-26127.
https://doi.org/10.1364/OE.22.026117
[7]  Ung, B., Vaity, P. and Wang, L. (2014) Few-Mode Fiber with Inverse-Parabolic Graded-Index Profile for Transmission of OAM-Carrying Modes. Optics Express, 22, 18044-18055.
https://doi.org/10.1364/OE.22.018044
[8]  Li, S. and Wang, J. (2014) A Compact Trench-Assisted Multi-Orbital-Angular-Momentum Multi-Ring Fiber for Ultrahigh-Density Space-Division Multiplexing (19 Rings × 22 OAM Modes). Scientific Reports, 4, 3853-3853.
https://doi.org/10.1038/srep03853
[9]  Birks, T.A., Knight, J.C. and Russell, P.St.J. (1997) Endlessly Single-Mode Photonic Crystal Fiber. Optics Letters, 22, 961-963.
https://doi.org/10.1364/OL.22.000961
[10]  Yue, Y., Zhang, Y. and Yan, Y. (2012) Octave-Spanning Supercontinuum Generation of Vortices in a As2S3 Ring Photonic Crystal Fiber. Optics Letters, 37, 1889-1891.
https://doi.org/10.1364/OL.37.001889
[11]  Wong, G.K.L., Kang, M.S. and Lee, H.W. (2012) Excitation of Orbital Angular Momentum Resonances in Helically Twisted Photonic Crystal Fiber. Science, 337, 446-449.
https://doi.org/10.1126/science.1223824
[12]  Tian, W., Zhang, H. and Zhang, X. (2016) A Circular Photonic Crystal Fiber Supporting 26 OAM Modes. Optical Fiber Technology, 30, 184-189.
https://doi.org/10.1016/j.yofte.2016.07.009
[13]  Nandam, A. and Woojin, S. (2018) Spiral Photonic Crystal Fiber Structure for Supporting Orbital Angular Momentum Modes. Optik International Journal for Light and Electron Optics, 169, 361-367.
https://doi.org/10.1016/j.ijleo.2018.05.055
[14]  Bai, X., Chen, H. and Yang, H. (2018) Design of a Circular Photonic Crystal Fiber with Square Air-Holes for Orbital Angular Momentum Modes Transmission. Optik International Journal for Light and Electron Optics, 158, 1266-1274.
https://doi.org/10.1016/j.ijleo.2018.01.015
[15]  Ke, X. and Ge, T. (2017) Experiment on Generation of Vortex Light with Few-Mode Fiber. Chinese Journal of Lasers. 44, 182-189.
https://doi.org/10.3788/CJL201744.1106004
[16]  Ke, X. and Wang, J. (2018) Generation, Transmission, Detection and Application of the Vortex Beam. Science Press, Beijing.
[17]  Ramachandran, S., Kristensen, P. and Yan, M. (2009) Generation and Propagation of Radially Polarized Beams in Optical Fibers. Optics Express, 34, 2525-2527.
https://doi.org/10.1364/OL.34.002525
[18]  Ramachandran, S. and Kristensen, P. (2013) Optical Vortices in Fiber. Nanophotonics, 2, 455-474.
https://doi.org/10.1515/nanoph-2013-0047
[19]  Dashti, P.Z., Alhassen, F. and Lee, H. (2006) Observation of Orbital Angular Momentum Transfer between Acoustic and Optical Vortices in Optical Fiber. Physical Review Letters, 96, Article ID: 043604.
https://doi.org/10.1103/PhysRevLett.96.043604
[20]  Inci, H.D. and Ozsoy, S. (2014) Birefringence, Dispersion and Loss Properties for PCFs with Rectangular Air-Hole. Infrared Physics & Technology, 67, 354-358.
https://doi.org/10.1016/j.infrared.2014.08.007
[21]  Zhang, X., Yuan, M. and Chang, M. (2018) Characteristics in Square Air Hole Structure Photonic Crystal Fiber. Opto-Electronic Engineering, 45, 23-31.
[22]  Kumar, V.V.R.K., George, A.K. and Knight, J.C. (2003) Tellurite Photonic Crystal Fiber. Optics Express, 11, 2641-2645.
https://doi.org/10.1364/OE.11.002641
[23]  Yajima, T., Yamamoto, J. and Ishii, F. (2013) Low-Loss Photonic Crystal Fiber Fabricated by a Slurry Casting Method. Optics Express, 21, 30500-30506.
https://doi.org/10.1364/OE.21.030500
[24]  Maji, P. and Chaudhuri, P. (2013) Circular Photonic Crystal Fibers: Numerical Analysis of Chromatic Dispersion and Losses. ISRN Optics, 2013, Article ID: 986924.
https://doi.org/10.1155/2013/986924
[25]  Zhang, H., Zhang, W. and Xi, L. (2016) A New Type Circular Photonic Crystal Fiber for Orbital Angular Momentum Mode Transmission. IEEE Photonics Technology Letters, 28, 1426-1429.
https://doi.org/10.1109/LPT.2016.2551325
[26]  Xu, H., Wu, J. and Xu, K. (2011) Ultra-Flattened Chromatic Dispersion Control for Circular Photonic Crystal Fibers. Journal of Optics, 13, 994-1001.
https://doi.org/10.1088/2040-8978/13/5/055405
[27]  Bai, X., Chen, H. and Zhang, L. (2019) Circular Photonic Crystal Fiber Supporting Orbital Angular Momentum Modes Transmission. Infrared and Laser Engineering, 48, 224-231.
https://doi.org/10.3788/IRLA201948.0222002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133