The photovoltaic performance (efficiency η) of an ITO/CdS/CdTe structure cell is studied in this article according to its electrical properties.The study is carried out by simulation with SCAPS (Solar Cell Capacitance Simulator) whose mathematical model is based on solving the equations of Poisson and continuity of electrons and holes. An electrical conversion efficiency of 23.58% is obtained by optimizing the mobility of the electrons (100 cm2/Vs), that of the holes (25 cm2/Vs), the density of electrons (1015 cm-3), the density of the effective states in the conduction band (7.9 ×1017 cm-3) and the electronic affinity (3.85 eV) of the CdTe absorbent layer.
References
[1]
Ould Bilal, B., Sambou, V., Kebé, C.M.F., Ndongo, M. and Ndiaye, P.A. (2007) Etude et modélisation du potentiel solaire du site de nouakchott et de dakar. Journal des Sciences, 7, 57-66.
[2]
Equer, B. (1993) Physique et technologie de la conversion photovoltaique. ELLIPES, Paris.
[3]
Chamberlain, G.A. (1983) Organic Solar Cells: A Review. Solar Cells, 8, 47-83.
https://doi.org/10.1016/0379-6787(83)90039-X
[4]
Wright, M. and Uddin, A. (2012) Organic—Inorganic Hybrid Solar Cells: A Comparative Review. Solar Energy Materials and Solar Cells, 107, 87-111.
https://doi.org/10.1016/j.solmat.2012.07.006
[5]
Bruton, T., Mason, N., Roberts, S., Hartley, O.N., Gledhill, S., Fernandez, J., Russell, R., Warta, W., Glunz, S., Schultz, O., Hermle, M. and Willeke, G. (2003) Towards 20% Efficient Silicon Solar Cells Manufactured at 60 MWp per Annum.
[6]
Slaoui, A. (2015) Matériaux et Technologie pour le photovoltaique: Etat de l’Art et Perspectives. CNRS.
[7]
Burgelman, M., Decock, K., Niemegeers, A., Verschraegen, J. and Degrave, S. (2019) SCAPS Manual. Elis-Ugent, December.
[8]
Burgelman, M., Nollet, P. and Degrave, S. (2000) Modelling Polycrystalline Semiconductor Solar Cells. Thin Solid Films, 361, 527-532.
https://doi.org/10.1016/S0040-6090(99)00825-1
[9]
Burgelman, M., Verschraegen, J., Degrave, S. and Nollet, P. (2004) Modeling Thin-Film PV Devices. Progress in Photovoltaics: Research and Applications, 12, 143-153. https://doi.org/10.1002/pip.524
[10]
elis.ugent.be (2019) http://scaps.elis.ugent.be/
[11]
Kai, S., Li, Q., Wang, D.Z., Yang, R.L., Deng, Y., Jeng, M.-J. and Wang, D.L. (2016) CdTe Solar Cell Performance under Low-Intensity Light Irradiance. Solar Energy Materials & Solar Cells, 144, 472-480. https://doi.org/10.1016/j.solmat.2015.09.043
[12]
Hacène, B. (2014) Modélisation et simulation des cellules solaires à base de P3HT: PCBM (effet de la mobilite et la vitesse de recombinaison en surface). Universite Abu BakrBekkaid, Algerie.
[13]
Hervé, J., Tchognia, N., Hartiti, B., Ndjaka, J.-M. and Ridah, A. (2015) Performances des cellules solaires à base de Cu2ZnSnS4 (CZTS): Une analyse par simulations numériques via le simulateur SCAPS. Afrique Sciences, 11, 16-23.
[14]
Huang, C.-H. and Chuang, W.-J. (2015) Dependence of Performance Parameters of CdTe Solar Cells on Semiconductor Properties Studied by Using SCAPS-1D. Vaccum, 118, 32-37. https://doi.org/10.1016/j.vacuum.2015.03.008
[15]
Al Kuhaimi, S.A., Shaalan, N.M. and Bahammam, S (1998) The Electron Affinity Difference in CdS/CdTe Solar Cells. Proceedings of the Indian Academy of Sciences-Chemical Sciences, 110, 199-206.