The
gravimetric analysis ofelectrodeposited nickel is demonstrated using electrochemical quartz crystal
microbalance (EQCM)where the nickel coatings come from a
solution of the metal chloride salt separately in either a1choline chloride: 2
ethylene glycol (ethaline) or 1 choline chloride: 2 urea (reline) based ionic
liquid. The possibility of adapting the Quartz Crystal Microbalance EQCM (which
measures the mass attached to the electrode) to probe kinetics of
electrochemically-driven solid state phase transformations has been explored in
a Ni electrodeposition in absence and presence of complexing agents ethylene
diamine en and acetylacetonate acac from both electrolytes ethaline and reline.
The study shows that the current efficiency and the rate of deposition of
nickel coatings obtained from ethaline and reline baths in absence of
brighteners en and acac are different, and the addition of en and acac to both
ionic liquid solutions results in a significant decrease current. And the
associated growth rate will also be decreased, suggesting that the en acac stops the
formation and growth of Ni nuclei. This suggests that the mechanism of growth
is changed.
References
[1]
Owen, M.P., Lawrance, G.A. and Donne, S.W. (2007) An Electrochemical Quartz Crystal Microbalance Study into the Deposition of Manganese Dioxide. Electrochimica Acta, 52, 4630-4639. https://doi.org/10.1016/j.electacta.2007.01.012
[2]
Hubkowska, K., Lukaszewski, M. and Czerwinski, A. (2006) Quartz Crystal Nanobalance Measurements in Electrocatalysis. Journal of Electroanalytical Chemistry, 589, 38-45.
[3]
Ferreira, M., Varela, H., Torresi, R.M. and Tremiliosi-Filho, G. (2006) Electrode Passivation Caused by Polymerization of Different Phenolic Compounds. Electrochimica Acta, 52, 434-442. https://doi.org/10.1016/j.electacta.2006.05.025
[4]
Schneider, T.W. and Buttry, D.A. (1993) Electrochemical Quartz Crystal Microbalance Studies of Adsorption and Desorption of Self-Assembled Monolayers of Alkyl Thiols on Gold. Journal of the American Chemical Society, 115, 12391-12397. https://doi.org/10.1021/ja00079a021
[5]
Chatenet, M., Soldo-Olivier, Y., Chainet, E. and Faure, R. (2007) Electrochemical Quartz Crystal Microbalance Determination of Nickel Formal Partial Charge Number during Nickel-Underpotential Deposition on Platinum in Sulphate Media. Electrochemistry Communications, 9, 1463-1468. https://doi.org/10.1016/j.elecom.2007.02.001
[6]
Nicic, I., Liang, J., Cammarata, V., Alanyalioglu, M., Demir, U. and Shannon, J. (2002) Underpotential Deposition of Te Monolayers on Au Surfaces from Perchloric Acid Solution Studied by Chronocoulometry and EQCM. Journal of Physical Chemistry B, 106, 12247-12252. https://doi.org/10.1021/jp026625w
[7]
Herzog, G. and Arrigan, D.W.M. (2005) Underpotential Deposition and Stripping of Lead at Disorganized Monolayer-Modified Gold Electrodes. Electroanalysis, 17 1816-1821. https://doi.org/10.1002/elan.200503318
[8]
Santos, M.C. and Machado, S.A.S. (2005) A Voltammetric and Nanogravimetric Study of Te Underpotential Deposition on Pt in Perchloric Acid Medium. Electrochimica Acta, 50, 2289-2295. https://doi.org/10.1016/j.electacta.2004.10.040
[9]
Su, Y., Xie, Q.J., Cao, Z.J. and Jia, X. (2006) EQCM and Fluoroelectrochemical Studies on the Catalytic Oxidation of NADH at a Pencil 8B-Scrawled Gold Electrode with High Detection Sensitivity. Electroanalysis, 18, 1105-1113. https://doi.org/10.1002/elan.200603510
[10]
Sauerbrey, G. (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik, 155, 206-222. https://doi.org/10.1007/BF01337937
[11]
Curie, J. and Curie, P. (1880) Sur L’électricité Polaire dans les Cristaux Hémièdres à Faces Inclinées. Comptes rendus de l’Académie des Sciences, 91, 294-295.
[12]
Lu, C. (1984) Applications of Piezoelectn’c Quartz Crystal Microbalances. Elsevier, Amsterdam, 19. https://doi.org/10.1016/B978-0-444-42277-4.50008-9
[13]
Encarnação, J.M., Stallinga, P. and Ferreira, G.N.M. (2007) Influence of Electrolytes in the QCM Response: Discrimination and Quantification of the Interference to Correct Microgravimetric Data. Biosensors and Bioelectronics, 22, 1351-1358. https://doi.org/10.1016/j.bios.2006.06.011
[14]
Czandema, A.W. and Lu, C. (1984) Applications of Piezoelectronic Quartz Crystal Microbalances. Elsevier, Amsterdam, 1. https://doi.org/10.1016/B978-0-444-42277-4.50007-7
[15]
Ke, X., Deng, L.-L., Shen, P.-K. and Cui, G.-F. (2010) Chemical Research in Chinese Universities, 26, 443.
[16]
Rodahl, M., Höök, F., Krozer, A., Kasemo, B. and Brzezinski, P. (1995) Quartz Crystal Microbalance Setup for Frequency and Q-Factor Measurements in Gaseous and Liquid Environments. Review of Scientific Instruments, 66, 3924-3930. https://doi.org/10.1063/1.1145396
[17]
Buttry, D.A. and Ward, M.D. (1992) Measurement of Interfacial Processes at Electrode Surfaces with the Electrochemical Quartz Crystal Microbalance. Chemical Reviews, 92, 1355-1379. https://doi.org/10.1021/cr00014a006
[18]
Abbott, A., El Ttaib, K., Frisch, G., McKenzie, K. and Ryder, K. (2009) Electrodeposition of Copper Composites from Deep Eutectic Solvents Based on Choline Chloride. Physical Chemistry Chemical Physics, 11, 4269-4277. https://doi.org/10.1039/b817881j
[19]
Alesary, H., Cihangir, S., Ballantyne, A., Harris, R., Weston, D., Abbott, A.P. and Ryder, K.S. (2019) Influence of Additives on the Electrodeposition of Zinc from a Deep Eutectic Solvent. Electrochimica Acta, 304, 118-130. https://doi.org/10.1016/j.electacta.2019.02.090
[20]
Abbott, A.P., El Ttaib, K., Ryder, K.S. and Smith, E.L. (2008) Electrodeposition of Nickel Using Eutectic Based Ionic Liquids. Transactions of the IMF, 86, 234-240. https://doi.org/10.1179/174591908X327581.