全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cascade R-CNN和YOLOv3在导弹目标识别中的应用
Application of Cascade R-CNN and YOLOv3 in Missile Target Recognition

DOI: 10.12677/JISP.2020.92013, PP. 102-110

Keywords: 导弹末制导,自动目标识别,Cascade R-CNN,YOLOv3
Missile Terminal Guidance
, Automatic Target Recognition, Cascade R-CNN, YOLOv3

Full-Text   Cite this paper   Add to My Lib

Abstract:

人工智能技术和计算机视觉技术的发展,为舰载导弹准确攻击各类海上、陆上目标识别提供了新的技术支持,基于深度学习的自动目标识别技术对提高导弹寻的制导精度提供了新的技术保证。介绍了多种基于卷积神经网络的目标识别算法,应用YOLOv3和Cascade R-CNN算法进行了导弹目标识别检测实验。实验结果表明,二种算法各有千秋,YOLOv3算法的准确率和召回率低于Cascade R-CNN,但其检测效率高于Cascade R-CNN,因此在目标识别过程中,采用深度学习算法是导弹提高攻击目标准确性的一种有效途径。
The development of artificial intelligence technology and computer vision technology provides a new technical support for the shipborne missile to attack all kinds of sea and land targets accu-rately. The automatic target recognition technology based on deep learning provides a new technical guarantee for improving the accuracy of missile target recognition. This paper intro-duces a variety of target recognition algorithms based on convolutional neural network and ap-plies the YOLOv3 and Cascade R-CNN algorithm to the missile target recognition and detection experiments. The experimental results show that the two algorithms have their own advantages. The accuracy and recall rate of YOLOv3 algorithm are lower than that of Cascade R-CNN, but its detection efficiency is higher than that of Cascade R-CNN. In the process of target recognition, using deep learning algorithm is an effective way for missiles to improve the accuracy of attack-ing targets.

References

[1]  赵晓震. 导弹自动目标识别关键技术研究[J]. 飞航导弹, 2014(2): 51-56.
[2]  江言林, 高立志, 刘铁军. 反舰导弹目标识别选择技术的发展应用[J]. 飞航导弹, 2009(1): 53-55.
[3]  Hinton, G.E., Osindero, S. and The, Y.W. (2006) A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 18, 1527-1554.
https://doi.org/10.1162/neco.2006.18.7.1527
[4]  马啸, 邵利民, 金鑫, 徐冠雷. 深度学习技术及其在舰船目标识别领域的应用[J]. 计算机技术与发展, 2019, 29(12): 141-147.
[5]  田启川, 王满丽. 深度学习算法研究进展[J]. 计算机工程与应用, 2019, 55(22): 25-33.
[6]  张荣, 李伟平, 莫同. 深度学习研究综述[J]. 信息与控制, 2018, 47(4): 385-397 + 410.
[7]  Lecun, Y., Boser, B.E., Denker, J.S., et al. (1989) Back Propagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1, 541-551.
https://doi.org/10.1162/neco.1989.1.4.541
[8]  Krizhevsky, A., Sutskever, I. and Hinton, G. (2012) ImageNet Classification with Deep Convolutional Neural Networks.
[9]  隋雪莲, 张涛, 曲乔新. 深度学习在遥感影像目标识别与定位中的应用研究[J]. 科技创新与应用, 2019(34): 180-181.
[10]  曹昭睿, 白帆, 刘凤丽, 郝永平. 基于轻量化神经网络的目标识别跟踪算法研究[J/OL]. 弹箭与制导学报, 1-5. http://kns.cnki.net/kcms/detail/61.1234.tj.20191211.1730.006.html, 2020-03-24.
[11]  Cai, Z.W. and Nuno, V. (2019) Cascade R-CNN: High Quality Object Detection and Instance Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence.
https://doi.org/10.1109/TPAMI.2019.2956516
[12]  周刚. 基于Cascade R-CNN的车辆目标检测方法[J]. 内燃机与配件, 2019(20): 146-148.
[13]  徐昕军, 江波, 黄启迪. 基于Cascade R-CNN的铁路路基翻浆冒泥病害智能识别方法[J]. 铁道建筑, 2019, 59(12): 99-104.
[14]  Redmon, J., Divvala, S., Girshick, R., et al. (2016) You Only Look Once: Unified, Real-Time Object Detection. Proceedings of Computer Vision and Pattern Recognition, Boston, MA, 779-788.
https://doi.org/10.1109/CVPR.2016.91
[15]  Redmon, J. and Farhadi, A. (2016) YOLO9000: Better, Faster, Stronger. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 6517-6525.
https://doi.org/10.1109/CVPR.2017.690
[16]  Redmon, J. and Farhadi, A. (2018) Yolov3: An Incremental Improvement.
[17]  陈正斌, 叶东毅, 朱彩霞, 廖建坤. 基于改进YOLOv3的目标识别方法[J]. 计算机系统应用, 2020, 29(1): 49-58.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133