全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于贝叶斯框架的深部成矿构造推断及不确定性研究
Deep Metallogenic Structure Inference and Uncertainty Study Based on Bayesian Framework

DOI: 10.12677/AG.2020.103019, PP. 215-225

Keywords: 深部成矿构造,贝叶斯推断,不确定性分析
Deep Metallogenic Structure
, Bayesian Inference, Uncertainty Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

矿产资源评价目前正逐步向三维定量预测方向发展,然而,随着预测深度的增加,由于深部探测数据减少,深部三维模型的不确定性也逐渐增长,因此如何减少不确定性以及如何对不确定性进行很好的度量是目前三维定量预测所研究的重要问题。本文提出一种基于贝叶斯框架的深部成矿构造推断及不确定性度量方法,利用该方法对大尹格庄金矿床成矿构造招平断裂面深部结构进行贝叶斯推断及不确定度量,最终基于推断得到的断裂面形态后验概率,得出深部成矿构造不确定性可视化结果。研究表明,通过该方法得到的不确定性可视化模型与地质认识相符,可为后续的深部成矿构造三维模型修正提供引导。
Mineral resources evaluation is now gradually moving towards 3D quantitative prediction. However, with the increase of the predicted depth, the uncertainty of the metallogenic structure located in the deep due to its scarce data has always existed. Therefore, how to reduce the uncertainty and how to measure uncertainty is a hot issue to study the 3D quantitative prediction. This paper mainly uses the Bayesian theory to construct the Bayesian model, and based on this model, the Bayesian inference is made for the deep metallogenic structure of the Dayingezhuang mining area, and finally obtains a visual model based on the deep metallogenic structure. Research shows that the uncertainty visualization model obtained through this example is consistent with geological research, and can provide guidance for subsequent iterative inference of 3D models of deep metallogenic structures.

References

[1]  Zhao, P. (1992) Theories, Principles, and Methods for the Statistical Prediction of Mineral Deposits. Mathematical Geology, 24, 589-595.
https://doi.org/10.1007/BF00894226
[2]  肖克炎. 大比例尺综合信息成矿预测的研究问题及途径[J]. 黄金地质科技, 1993(4): 34-39.
[3]  Caumon, G., Ortiz, J.M. and Rabeau, O. (2006) A Comparative Study of Three Da-ta-Driven Mineral Potential Mapping Techniques. In: IAMG06, Belgium.
[4]  成秋明. 成矿过程奇异性与矿产预测定量化的新理论与新方法[J]. 地学前缘, 2007, 14(5): 42-53.
[5]  Wang, G., Zhang, S., Yan, C., Song, Y., Sun, Y., Li, D. and Xu, F. (2011) Mineral Potential Targeting and Resource Assessment Based on 3D Geological Modeling in Luanchuan Region, China. Computers & Geosciences, 37, 1976-1988.
https://doi.org/10.1016/j.cageo.2011.05.007
[6]  陈建平, 吕鹏, 吴文, 等. 基于三维可视化技术的隐伏矿体预测[J]. 地学前缘, 2007, 14(5): 54-62.
[7]  毛先成. 三维数字矿床与隐伏矿体立体定量预测研究[D]: [博士学位论文]. 长沙: 中南大学, 2006: 1-100.
[8]  袁峰, 李晓晖, 张明明. 隐伏矿体三维综合信息成矿预测方法[J]. 地质学报, 2014, 88(4): 630-643.
[9]  Martin, L., Perron, G. and Masson, M. (2007) Discovery from 3D Visualization and Quantitative Modelling. In: Proceedings of Exploration 07: Fifth DecenNial Interna-tional Conference on Mineral Exploration, Toronto.
[10]  赵鹏大. 成矿定量预测与深部找矿[J]. 地学前缘, 2007, 14(5): 1-10.
[11]  滕吉文, 张永谦, 阮小敏, 等. 地球内部壳幔介质地震各向异性与动力学响应[J]. 地球物理学报, 2012, 55(11): 3648-3670.
[12]  吕庆田, 刘振东, 严加永, 等. 铜陵矿集区地壳结构格架: 反射地震证据[C]//2014年中国地球科学联合学术年会, 2014年10月20日~23日, 北京.
[13]  曾广兵, 高星, 高凤. 招平断裂带大尹格庄–夏甸段控矿构造性质分析[C]//2016年第一届今日财富论坛论文集. 北京: 今日财富杂志社, 2016: P618.51.
[14]  高星, 杨斌, 陈艳, 等. 山东大尹格庄金矿床控矿构造性质与演化[J]. 矿床地质, 2010, 29(S1): 45-46.
[15]  Mao, X., Ren, J., Liu, Z., et al. (2019) Three-Dimensional Prospectivity Modeling of the Jiaojia-Type Gold Deposit, Jiaodong Peninsula, Eastern China: A Case Study of the Dayingezhuang Deposit. Journal of Geochemical Exploration, 203, 27-44.
https://doi.org/10.1016/j.gexplo.2019.04.002
[16]  Pearl, J. (1986) Fusion, Propagation, and Structuring in Belief Net-works. Artificial Intelligence, 29, 241- 288.
https://doi.org/10.1016/0004-3702(86)90072-X
[17]  肖张波. 地震数据约束下的贝叶斯随机反演方法研究[D]: [硕士学位论文]. 青岛: 中国石油大学(华东), 2013.
[18]  李东利, 孟强, 赵明. 边坡稳定不确定性分析的贝叶斯方法[J]. 河南城建学院学报, 2013, 22(5): 9-13.
[19]  胥新政, 强毅, 傅华栋. 基于贝叶斯方法的不确定性信息处理研究进展综述[J]. 机电产品开发与创新, 2018, 31(6): 1-2+9.
[20]  曹哲铭, 尹立子. 浅析核密度估计方法[J]. 中国科技博览, 2014(37): 345.
[21]  李存华, 孙志挥, 陈耿, 等. 核密度估计及其在聚类算法构造中的应用[J]. 计算机研究与发展, 2004, 41(10): 1712-1719.
[22]  Bhattacharyya, B.K. (1964) Magnetic Anomalies Due to Prism-Shaped Bodies with Arbi-trary Polarization. Geophysics, 29, 517-531.
https://doi.org/10.1190/1.1439386
[23]  王建平, 程声通, 贾海峰. 基于MCMC法的水质模型参数不确定性研究[J]. 环境科学, 2006, 27(1): 24-32.
[24]  房爱东, 谢士春. MCMC采样技术及其在贝叶斯推断上的应用[J]. 长沙大学学报, 33(2): 6-10.
[25]  Nú?ez, J.A., Cincotta, P.M. and Wachlin, F.C. (1996) In-formation Entropy. Celestial Mechanics & Dynamical Astronomy, 64, 43-53.
https://doi.org/10.1007/BF00051604

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133