全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于DEA-GA-BP的智能评标决策支持系统的设计与实现
Design and Implementation of a Tender Evaluation IDSS System Based on DEA-GA-BP Neural Network

DOI: 10.12677/CSA.2020.103056, PP. 541-552

Keywords: 评标系统,DEA-GA-BP,神经网络,数据挖掘,云计算
Bid Evaluation System
, DEA-GA-BP, Neural Networks, Data Mining, Cloud Computing

Full-Text   Cite this paper   Add to My Lib

Abstract:

评标是建设工程招投标中的关键环节,能否对投标人进行一个全面、客观且正确的评价是招标成功的关键。随着互联网的飞速发展,针对人工评标的主观性、随意性和倾向性可能给建设工程招投标工作带来的评标结果偏差。本文在建立合理的评标指标体系的基础上,以BP神经网络算法的网络均方误差进行适应度函数设计,然后利用MATLAB编程建立了一种基于GA-BP神经网络的计算机自动评标模型,并采用建设工程项目实例对模型的评价效果进行了检验。该模型除了具有BP神经网络的并行处理、鲁棒性、自适应和自学习的优势外,与基于传统的BP神经网络建立的模型相比,其预测性能、预测精度和泛化能力都得到了有效改进,大大提高了评标的客观性和工作效率,也适用于建设工程项目其他类型评标中的非线性问题的求解。本文设计和实现了智能评标决策系统并将数据挖掘和云计算的相关技术引入该系统中,大大提高了评标的客观性和工作效率。
Bid evaluation is a key link in the bidding of construction projects. Whether a bidder can be com-prehensively, objectively and correctly evaluated is the key to successful bidding. With the rapid development of the Internet, the subjectivity, arbitrariness, and inclination of manual bid evalua-tion may cause deviations in the bid evaluation results of construction projects. Based on the es-tablishment of a reasonable bid evaluation index system, this paper uses the network mean square error of the BP neural network algorithm to design the fitness function, and then uses MATLAB programming to establish a computer automatic bid evaluation model based on the GA-BP neural network. The evaluation effect of the model was tested by using a construction project example. In addition to the advantages of parallel processing, robustness, self-adaptation and self-learning of the BP neural network, compared with the model based on the traditional BP neural network, the model has obtained prediction performance, prediction accuracy and generalization ability. Effec-tive improvement greatly improves the objectivity and work efficiency of bid evaluation, and is also applicable to the solution of non-linear problems in other types of bid evaluation of construc-tion projects. This paper designs and implements an intelligent bidding decision-making system and introduces data mining and cloud computing related technologies into the system, which greatly improves the objectivity and efficiency of bid evaluation.

References

[1]  陈天福. 贵阳建设工程电子招投标系统的设计与实现[D]: [硕士学位论文]. 长春: 吉林大学, 2013.
[2]  楚英元. 基于BIM技术的招标控制价文件编制[C]//中国智慧工程研究会智能学习与创新研究工作委员会. 2018年“智慧建造与设计施工”学术论坛(IADC2018)论文汇编. 中国智慧工程研究会智能学习与创新研究工作委员会, 2018.
[3]  仇瑞雪. 浅析BIM技术在工程项目电子招投标系统建设中的应用[J]. 现代工业经济和信息化, 2015(6): 52-54.
[4]  刘玉美, 李青云. 浅谈综合评估法在建筑工程招投标中应用存在的几点问题及措施建议[J]. 居舍, 2019(23): 179-180.
[5]  叶玉嫦. 工程量清单计价模式下最低价中标合理性评审研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2018.
[6]  袁相国. 国外公共合同的电子招投标程序及其管理初探[J]. 招标与投标, 2018, 6(11): 51-56.
[7]  颜文华. 改进模糊综合评价法在工程监理评标中的应用分析[J]. 居舍, 2018(23): 248-249.
[8]  何芙蓉. 层次分析法在施工招投标中的应用研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2014.
[9]  赵振洋, 陆志峰. 灰色关联分析法在综合评标中的应用[J]. 中国水能及电气化, 2014(4): 30-34.
[10]  张燕. 基于遗传算法的评标专家管理系统开发与研究[D]: [硕士学位论文]. 天津: 天津大学, 2014.
[11]  汪学清, 黄嘉林, 胡德俊. 基于PSO-RBF神经网络的项目招标评标应用研究[J]. 工程管理学报, 2014, 28(6): 96-101.
[12]  徐若晨, 郑迪, 赵翔, 等. 云招标系统中业务管理功能的设计与实现[J]. 网络新媒体技术, 2016, 5(2): 48-58.
[13]  杨思远, 田胜利, 方青, 张晶华. 基于BP神经网络的二阶段评标法效用分析[J]. 工程经济, 2018, 28(12): 66-69.
[14]  吴筱娟. 网络招投标计划的设计与实现[D]: [硕士学位论文]. 成都: 电子科技大学, 2010.
[15]  唐海荣, 尹贻林. 基于GA-BP神经网络的施工招标项目评标方法研究[J]. 项目管理技术, 2011, 9(9): 48-52.
[16]  Wan, D.S., Hu, Y.T. and Ren, X. (2009) BP Neural Network with Error Feedback Input Research and Application. Proceedings of 2009 Second International Conference on Intelligent Computation Technology and Automation, 1, 63-66.
https://doi.org/10.1109/ICICTA.2009.24
[17]  Shi, H.W. (2009) Application of Unascertained Method and Neural Networks to Quality Assessment of Construction Project. Proceedings of 2009 Second International Conference on Intelligent Computation Technology and Automation, 1, 52-55.
https://doi.org/10.1109/ICICTA.2009.21
[18]  沈焱萍, 郑康锋, 伍淳华, 杨义先. 智能启发算法在机器学习中的应用研究综述[J]. 通信学报, 2019, 40(12): 124-137.
[19]  江小燕, 胡康, 于竞宇. 基于DEA-GA-BP的建设工程评标方法研究[J]. 价值工程, 2016, 35(30): 27-31.
[20]  Chaovalitwongse, W.A., Wang, W., Williams, T.P., et al. (2012) Data Mining Framework to Optimize the Bid Selection Policy for Competitively Bid Highway Construction Projects. Journal of Construction Engineering & Management, 138, 277-286.
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000386

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133