|
一种融合语法信息的句子压缩方法
|
Abstract:
[1] | Jing, H. (2000) Sentence Reduction for Automatic Text Summarization. Conference on Applied Natural Language Processing, Seattle, 29 April-4 May 2000, 310-315. https://doi.org/10.3115/974147.974190 |
[2] | Knight, K. and Marcu, D. (2000) Statistics-Based Summarization—Step One: Sentence Compression. National Conference on Artifi-cial Intelligence, Austin, 703-710. |
[3] | Filippova, K., Alfonseca, E., Colmenares, C.A., et al. (2015) Sentence Com-pression by Deletion with LSTMs. Empirical Methods in Natural Language Processing, Lisbon, September 2015, 360-368. https://doi.org/10.18653/v1/D15-1042 |
[4] | Hochreiter, S. and Schmidhuber, J. (1996) LSTM Can Solve Hard Long Time Lag Problems. Neural Information Processing Systems, Denver, 473-479. |
[5] | Gers, F.A., Schmidhuber, J., Cummins, F., et al. (2000) Learning to Forget: Continual Prediction with LSTM. Neural Computation, 12, 2451-2471. https://doi.org/10.1162/089976600300015015 |
[6] | Cohn, T. and Lapata, M. (2009) Sentence Compression as Tree Transduction. Journal of Artificial Intelligence Research, 34, 637-674. https://doi.org/10.1613/jair.2655 |
[7] | Filippova, K. and Strube, M. (2008) Dependency Tree Based Sentence Compression. International Conference on Natural Language Generation, Salt Fork, 12-14 June 2008, 25-32. https://doi.org/10.3115/1708322.1708329 |
[8] | Lai, D.V., Truong, N. and Minh, N.L. (2017) Deletion-Based Sentence Compression Using Bi-enc-dec LSTM, 2017. In: Conference of the Pacific Association for Computational Linguistics, Springer, Singapore, 249-260. https://doi.org/10.1007/978-981-10-8438-6_20 |
[9] | Tran, N., Luong, V., Nguyen, N.L., et al. (2016) Effective Attention-Based Neural Architectures for Sentence Compression with Bidirectional Long Short-Term Memory. Sym-posium on Information and Communication Technology, Ho Chi Minh City, 8-9 December 2016, 123-130. https://doi.org/10.1145/3011077.3011111 |
[10] | 鹿忠磊, 刘文芬, 周艳芳, 等. 基于预读及简单注意力机制的句子压缩方法[J]. 计算机应用研究, 2019, 36(2): 57-61+80. |
[11] | Wilks, Y. and Stevenson, M. (1998) The Grammar of Sense: Using Part-of-Speech Tags as a First Step in Semantic Disambiguation. Natural Language Engineering, 4, 135-143. https://doi.org/10.1017/S1351324998001946 |
[12] | 刘杰, 孙娜, 袁克柔, 等. 中文作文句间逻辑合理性智能判别方法研究[J]. 计算机应用与软件, 2019, 36(1): 77-83. |
[13] | Wang, L., Jiang, J., Chieu, H.L., et al. (2017) Can Syntax Help? Improving an LSTM-Based Sentence Compression Model for New Domains. Meeting of the Asso-ciation for Computational Linguistics, Vancouver, July 2017, 1385-1393. https://doi.org/10.18653/v1/P17-1127 |
[14] | He, K., Zhang, X., Ren, S., et al. (2016) Deep Residual Learning for Image Recognition. Computer Vision and Pattern Recognition, Las Vegas, 27-30 June 2016, 770-778. https://doi.org/10.1109/CVPR.2016.90 |
[15] | Mikolov, T., Sutskever, I., Chen, K., et al. (2013) Distributed Representations of Words and Phrases and Their Compositionality. Advances in Neural Information Processing Systems, Lake Tahoe, December 2013, 3111-3119. |
[16] | Mikolov, T., Chen, K., Corrado, G., et al. (2013) Efficient Estimation of Word Representations in Vector Space. International Conference on Learning Representations. arXiv preprint arXiv:1301.3781 |
[17] | Filippova, K. and Altun, Y. (2013) Overcoming the Lack of Parallel Data in Sentence Com-pression. Empirical Methods in Natural Language Processing, Seattle, 1481-1491. |
[18] | Prechelt, L. (1998) Early Stopping—But When? In: Orr, G.B. and Müller, K.-R., Eds., Neural Networks: Tricks of the Trade, Vol. 1524, Springer, Berlin, Heidelberg, 55-69. https://doi.org/10.1007/3-540-49430-8_3 |