全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于能量原理的动态加载下材料力学性能分析
Energy-Based Mechanical Properties Analysis of Materials under Dynamic Loading

DOI: 10.12677/IJM.2020.91003, PP. 18-23

Keywords: 静刚度,动刚度,动态性能,能量守恒
Static Stiffness
, Dynamic Stiffness, Dynamic Performance, Energy Conservation

Full-Text   Cite this paper   Add to My Lib

Abstract:

材料的基本力学性能,如刚度和强度等,通常是在准静态加载条件下测定的,即加载速度限制在不对结果产生影响的程度,但实际上该条件并没有明显的界限,工程中材料常常处于动态加载情况,其刚度和强度与静态存在明显的区别。不仅如何获得材料的动态性能是一个重要的技术问题,明确低速情况下刚度、强度等材料性能的表现特征,探讨造成材料动态性能与静态性能不同的物理机制也是一个具有理论意义的课题。本文从能量守恒的角度,对材料在动态加载情况下的变形与加载速度的关系进行了分析,基于材料力学性能与加载过程无关的认识,本文研究说明在动态加载情况下,材料变形速度造成材料细观变形机制发生变化,从而影响了材料宏观性能。上述结论与现有文献中的实验结果相比较,二者体现的规律呈现一致性。
The basic mechanical properties of materials, such as stiffness and strength, are usually measured under quasi-static loading conditions, i.e., the loading speed is limited to the extent which does not affect the results, but in fact there is no obvious boundary between the conditions. In engineering, materials are often under dynamic loading, and their stiffness and strength are obviously different from that in static state. Not only how to obtain the dynamic properties of materials is an important technical issue, but also it is of theoretical significance to clarify the performance characteristics of materials such as stiffness and strength at low speed, and to explore the physical mechanism that causes the difference between the dynamic and static properties of materials. From the perspective of energy conservation, this paper analyses the relationship between deformation and loading speed of materials under dynamic loading. Based on the knowledge that mechanical properties of materials are independent of the loading process, this paper shows that under dynamic loading, the deformation speed of materials changes the micro-deformation mechanism of materials, thus affecting the macroscopic properties of materials. The above conclusions are consistent with the experimental results in the existing literature.

References

[1]  李世尧, 张卫国, 侯军占, 等. 减振器动刚度特性研究[J]. 兵工学报, 2017, 38(11): 197-202.
[2]  吴青松. 温度和应变率对低合金钢力学行为的影响[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2005.
[3]  李细锋, 陈楠楠, 李佼佼. 温度与应变速率对Invar 36合金变形行为的影响[J]. 金属学报, 2017, 53(8): 968-974.
[4]  张诗昌, 刘纯, 刘升, 常庆明. 温度及应变率对挤压态AZ31镁合金弹性模量的影响[J]. 轻合金加工技术, 2016, 44(4): 62-65.
[5]  冯擎峰, 姚再起, 叶拓, 等. 6013-T4铝合金在不同温度和应变速率下的动态力学行为及数值模拟[J]. 机械工程材料, 2017, 41(7): 85-90, 97.
[6]  杨丽, 张宝友, 崔约贤, 王辉亭. 加载速率对30A钢断裂韧性的影响[J]. 兵器材料科学与工程, 2003, 26(5): 51-53, 56.
[7]  Lee, W.-S. and Tang, Z.-C. (2014) Relationship between Mechanical Properties and Microstructural Response of 6061-T6 Aluminum alloy Impacted at Elevated Temperatures. Materials & Design, 58, 116-124.
https://doi.org/10.1016/j.matdes.2014.01.053
[8]  赵寿根, 何著, 杨嘉陵, 程伟. 几种航空铝材动态力学性能实验[J]. 北京航空航天大学学报, 2007, 33(8): 982-985.
[9]  张长清, 谢兰生, 陈明和, 商国强. 高应变率下TC4-DT钛合金的动态力学性能及塑性本构关系[J]. 中国有色金属学报, 2015, 25(2): 323-329.
[10]  孙玲俐. 拉伸应变速率对316不锈钢微观组织演变及力学性能的影响[D]: [硕士学位论文]. 郑州: 郑州大学, 2018.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133