全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biomass Combined Heat and Power Generation for Anticosti Island: A Case Study

DOI: 10.4236/jpee.2020.83005, PP. 64-87

Keywords: CHP (Combined Heat and Power), Anticosti Island, Cogeneration, Heating Network, RET (Renewable Energy Technologies), Feasibility

Full-Text   Cite this paper   Add to My Lib

Abstract:

Combined heat and power (CHP) plants (co-generation plants) using biomass as fuel, can be an interesting alternative to the predominant electrical heating in Canada. The biomass-fueled boiler provides heat for the steam cycle which in turn generates electricity from the generator connected to the steam turbine. In addition, heat from the process is supplied to a district heating system. The heat can be extracted from the system in a number of ways, by using a back-pressure steam turbine, an extraction steam turbine or by extracting heat directly from the boiler. The objective of the paper is the design, modeling and simulation of such CHP plant. The plant should be sized for providing electric-ity and heat for the Anticosti Island community in Quebec.

References

[1]  Abbas, T., Issa, M. and Ilinca, A. (2020) Biomass Cogeneration Technologies: A Review. Journal of Sustainable Bioenergy Systems, 10, 1-15.
https://doi.org/10.4236/jsbs.2020.101001
[2]  Statistic Norway.
http://www.ssb.no/en
[3]  U.S. Environmental Protection Agency, Combined Heat and Power Partnership (2008) Catalog of CHP Technologies.
[4]  Urosevic, B.G. (2009) Combined Heat and Power Production in Industry. Manual for Energy Efficiency Improvements and Energy Conservation in Industry. Innovation Center of Mechanical Engineering Faculty Belgrade, Belgrade.
[5]  Rosillo-Calle, F., et al. (2007) The Biomass Assessment Handbook: Bioenergy for a Sustainable Environment. Earthscan, London.
[6]  Börjesson, M. and Ahlgren, E.O. (2012) 5.07 Biomass CHP Energy Systems: A Critical Assessment. In: Sayigh, A., Ed., Comprehensive Renewable Energy, Elsevier, Oxford, 87-97.
https://doi.org/10.1016/B978-0-08-087872-0.00508-4
[7]  Pglaro, R. (2008) Bioenergy and Regional Development in the Nordic Countries.
[8]  Domac, J., Richards, K., et al. (2005) Socio-Economic Drivers in Implementing Bioenergy Projects. Biomass & Bioenergy, 28, 97-106.
https://doi.org/10.1016/j.biombioe.2004.08.002
[9]  Jungingera, H.M., Jonker, J.G.G., Faaij, A., Cocchi, M., Hektor, B., Hess, R., Heinimö, J., Hennig, C., Kranzl, L., Marchal, D., Matzenberger, J., Nikolaisen, L., Pelkmans, L., Rosillo-Calle, F., Schouwenberg, P., Trømborg, E. and Walter, A. (2011) Summary, Synthesis and Conclusions from IEA Bio-Energy Task 40 Country Reports on International Bioenergy Trade.
[10]  Agency, E.E. (2006) How Much Bioenergy Can Europe Produce without Harming the Environment?
[11]  Scarlat, N., Dallemand, J.-F., Skjelhaugen, O.J., Asplund, D. and Nesheim, L. (2011) An Overview of the Biomass Resource Potential of Norway for Bioenergy Use. Renewable and Sustainable Energy Reviews, 15, 3388-3398.
https://doi.org/10.1016/j.rser.2011.04.028
[12]  Framstad, E., et al. (2009) Increased Biomass Harvesting for Bioenergy—Effects on Biodiversity, Landscape Amenities and Cultural Heritage Values. Tema Nord, Copenhagen.
[13]  Vallios, I., Tsoutsos, T. and Papadakis, G. (2009) Design of Biomass District Heating Systems. Biomass and Bioenergy, 33, 659-678.
https://doi.org/10.1016/j.biombioe.2008.10.009
[14]  Sha, S. and Hurme, M. (2012) Emergy Evaluation of Combined Heat and Power Plant Processes. Applied Thermal Engineering, 43, 67-74.
https://doi.org/10.1016/j.applthermaleng.2011.11.063
[15]  Bjørnstad, E. (2005) An Engineering Economics Approach to the Estimation of Forest Fuel Supply in North-Trøndelag County, Norway. Journal of Forest Economics, 10, 161-188.
https://doi.org/10.1016/j.jfe.2004.11.002
[16]  Energy and Environmental Analysis (an ICF International Company) (2008) 1655 North Fort Myer Drive Suite 600 Arlington V. Technology Characterization: Steam Turbines.
[17]  Drescher, U. and Bruggemann, D. (2007) Fluid Selection for the Organic Rankine Cycle (ORC) in Biomass Power and Heat Plants. Applied Thermal Engineering, 27, 223-228.
https://doi.org/10.1016/j.applthermaleng.2006.04.024
[18]  Obernberger, I., Thonhofer, P. and Reisenhofer, E. (2002) Description and Evaluation of the New 1000 kWel Organic Rankine Cycle Process Integrated in the Biomass CHP Plant in Lienz, Austria. Euroheat & Power, 10, 1-9.
[19]  Liu, B., Riviere, P., Coquelet, Ch., Gicquel, R. and Dawid, F. (2012) Investigation of a Two Stage Rankine Cycle for Electric Power Plants. Applied Energy, 100, 285-294.
https://doi.org/10.1016/j.apenergy.2012.05.044
[20]  DiGenova, K.J., Botros, B.B. and Brisson, J.G. (2013) Method for Customizing an Organic Rankine Cycle to a Complex Heat Source for Efficient Energy Conversion, Demonstrated on a Fischer Tropsch Plant. Applied Energy, 102, 746-754.
https://doi.org/10.1016/j.apenergy.2012.08.029
[21]  Trømborg, E., Bolkesjø, T.F. and Solberg, B. (2008) Biomass Market and Trade in Norway: Status and Future Prospects. Biomass and Bioenergy, 32, 660-671.
https://doi.org/10.1016/j.biombioe.2008.02.022
[22]  Kaminski, J. (2012) The Development of Market Power in the Polish Power Generation Sector: A 10-Year Perspective. Energy Policy, 42, 136-147.
https://doi.org/10.1016/j.enpol.2011.11.057
[23]  del Río, P., Ragwitz, M., Steinhilber, S., Resch, G., Busch, S., Klessmann, C., et al. (2012) Key-Policy Approaches for a Harmonisation of RES(-E) Support in Europe Main Options and Design Elements. A Report Compiled within the European Research Project beyond 2020 (Work Package 2). Supported by Intelligent Energy e-Europe, Altener (Grant Agreement No. IEE/10/437/SI2.589880).
http://www.respolicy-beyond2020.eu
[24]  Ragwitz, M. and Resch, G. (2007) Promotion of Renewable Energy Sources: Effects on Innovation. International Journal of Public Policy, 2, 32-56.
https://doi.org/10.1504/IJPP.2007.012275
[25]  del Río, P. and Bleda, M. (2012) Comparing the Innovation Effects of Support Schemes for Renewable Electricity Technologies: A Function of Innovation Approach. Energy Policy, 50, 272-282.
https://doi.org/10.1016/j.enpol.2012.07.014
[26]  Solinski, B. (2008) Support Mechanisms for the Promotion of Renewable Energy Sources e Feed in Tariff and Tradable Green Certificates Comparison. Energy Policy, 11, 107-119. (In Polish)
[27]  Batlle, C., Perez-Arriaga, I.J. and Zambrano-Barragan, P. (2012) Regulatory Design for RES-E Support Mechanisms: Learning Curves, Market Structure, and Burden Sharing. Energy Policy, 41, 212-220.
https://doi.org/10.1016/j.enpol.2011.10.039
[28]  Butler, L. and Neuhoff, K. (2008) Comparison of Feed-In Tariff, Quota and Auction Mechanisms to Support Wind Power Development. Renew Energy, 33, 1854-1867.
https://doi.org/10.1016/j.renene.2007.10.008
[29]  The German Renewable Energy Act. BT-Drucks. 17/6071, BT-Drucks. 17/6363.
http://www.bmu.de
[30]  Polish Power Exchange PolPX.
http://www.tge.pl/en
[31]  The Polish Energy Law.
http://www.ure.gov.pl
[32]  Tańczuk, M. and Ulbrich, R. (2013) Implementation of a Biomass-Fired Co-Generation Plant Supplied with an ORC (Organic Rankine Cycle) as a Heat Source for Small Scale Heat Distribution System—A Comparative Analysis under Polish and German Conditions. Energy, 62, 132-141.
https://doi.org/10.1016/j.energy.2013.09.044
[33]  Strzalka, R., Eicker, U. and Ulbrich, R. (2008) Operational Experiences and Optimization of an ORC Biomass Cogeneration Plant. Proceedings of 16th European Biomass Conference, Valencia, June 2008, 1-5.
[34]  Strzalka, R., Ulbrich, R. and Eicker, U. (2009) Analysis of a Biomass Tri-Generation System in an Urban Area. Proceedings of the 17th Biomass Conference, Hamburg, 29 June-2 July 2009, 2167-2171.
[35]  Erhart, T., Eicker, U. and Infield, D. (2011) Part-Load Characteristics of Organic-Rankine-Cycles. Proceedings of 2nd European Conference on Poly-Generation, Tarragona, 30 March-1 April 2011, 1-11.
[36]  HydroQuebec.
http://www.regie-energie.qc.ca/audiences/3648-07/Requete3648/B-1-HQD-02-01_3648_01nov07.pdf
[37]  Quoilin, S., Van Den Broek, M., Declaye, S., et al. (2013) Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems. Renewable and Sustainable Energy Reviews, 22, 168-186.
https://doi.org/10.1016/j.rser.2013.01.028
[38]  Uris, M., Linares, J.I. and Arenas, E. (2014) Evaluation de faisabilité tech-nico- économique d’une centrale de cogénération à la biomasse basée sur un cycle organique de Rankine. énergies Renouvelables, 66, 707-713.
https://doi.org/10.1016/j.renene.2014.01.022
[39]  Obernberger, I., Thonhofer, P. and Reisenhofer, E. (2002) Description and Evaluation of the New 1000 kWel Organic Rankine Cycle Process Integrated in the Biomass CHP Plant in Lienz, Austria. Euroheat & Power, 10, 18-25.
[40]  Obernberger, I. and Thek, G. (2004) Techno-Economic Evaluation of Selected Decentralised CHP Applications Based on Biomass Combustion in IEA Partner Countries.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133