全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Conserved Immunoglobulin Domain Similarities of Higher Plant Proteins

DOI: 10.4236/cmb.2020.101002, PP. 12-44

Keywords: Conserved Domain, Domain Shuffling, Deep Evolution, Evolution, Fold, Immunoglobulin, Kinase, Plant, Immunity, Resistance

Full-Text   Cite this paper   Add to My Lib

Abstract:

The traces of immunoglobulin domain similarities were searched in sequences of higher plants using bioinformatic tools to look for possible early phylogenic structural relationships. 280 thousand sequence IDs, obtained by sixteen types of primary BLAST searches, were differently processed by seventeen selection procedures and an anti-redundant sequence-related approach using JavaScript, PHP, Windows programs and conserved domain searches by means CDD. The resulting seventeen sets of records describing conserved domain similarities of 1323 different sequence IDs yielded a set of next generation (final set) comprising forty-nine records containing superior (“non-refutable”) conserved immunoglobulin domain similarities. The selected sets and their subsets were mapped and subsequently statistically compared with respect to immunoglobulin-related as well as other reciprocal domain linkages. The list of frequently occurring conserved domain similarities concerned first of all domains important for plant and metazoan immunity, e.g. tyrosine kinases accompanying variable immunoglobulin domains in early Metazoa, toll-like receptors, lectin and leucine-rich repeat domains. Detailed description of immunoglobulin domain similarities occurring in the final set was completed by fold analysis of the restricted segments. The data were then discussed with respect to i) immunoglobulin fold evolution, ii) possible structural importance of domains cd14066 (IRAK) and PLN00113 (LRR-associated kinase) for deep evolution of catalytic serine/threonine/tyrosine kinase domains, iii) interatomic, structural and specificity standpoints and iv) traces of antibody-like phosphorylation sites described in our previous paper.

References

[1]  Tsuda, K. and Somssich, I.E. (2015) Transcriptional Networks in Plant Immunity. New Phytologist, 206, 932-947.
https://doi.org/10.1111/nph.13286
[2]  Calil, I.P. and Fontes, E.P.B. (2017) Plant Immunity against Viruses: Antiviral Immune Receptors in Focus. Annals of Botany, 119, 711-723.
https://doi.org/10.1093/aob/mcw200
[3]  Brustolini, O.J., Silva, J.C., Sakamoto, T. and Fontes, E.P. (2017) Bioinformatics Analysis of the Receptor-Like Kinase (RLK) Superfamily. Methods in Molecular Biology, 1578, 123-132.
https://doi.org/10.1007/978-1-4939-6859-6_9
[4]  Dezhsetan, S. (2017) Genome Scanning for Identification and Mapping of Receptor-Like Kinase (RLK) Gene Superfamily in Solanum tuberosum. Physiology and Molecular Biology of Plants: An International Journal of Functional Plant Biology, 23, 755-765.
https://doi.org/10.1007/s12298-017-0471-6
[5]  Shchennikova, A.V., Kochieva, E.Z., Beletsky, A.V., Filyushin, M.A., Shulga, O.A., Ravin, N.V. and Skryabin, K.G. (2017) Identification and Expression Analysis of Receptor-Like Kinase Gene ERECTA in Mycoheterotrophic Plant Monotropa hypopitys. Molecular Biology (Moscow), 51, 780-786.
https://doi.org/10.1134/S002689331705017X
[6]  Bacete, L., Mélida, H., Miedes, E. and Molina, A. (2018) Plant Cell Wall-Mediated Immunity: Cell Wall Changes Trigger Disease Resistance Responses. The Plant Journal, 93, 614-636.
https://doi.org/10.1111/tpj.13807
[7]  Hervé, C., Dabos, P., Galaud, J.P., Rougé, P. and Lescure, B. (1996) Characterization of an Arabidopsis thaliana Gene That Defines a New Class of Putative Plant Receptor Kinases with an Extracellular Lectin-Like Domain. Journal of Molecular Biology, 258, 778-788.
https://doi.org/10.1006/jmbi.1996.0286
[8]  Afzal, A.J., Wood, A.J. and Lightfoot, D.A. (2008) Plant Receptor-Like Serine Threonine Kinases: Roles in Signaling and Plant Defense. Molecular Plant-Microbe Interactions, 21, 507-517.
https://doi.org/10.1094/MPMI-21-5-0507
[9]  Liu, P.L., Du, L., Huang, Y., Gao, S.M. and Yu, M. (2017) Origin and Diversification of Leucine-Rich Repeat Receptor-Like Protein Kinase (LRR-RLK) Genes in Plants. BMC Evolutionary Biology, 17, 47.
https://doi.org/10.1186/s12862-017-0891-5
[10]  Ma, N., Liu, C., Li, H., Wang, J., Zhang, B., Lin, J. and Chang, Y. (2018) Genome-Wide Identification of Lectin Receptor Kinases in Pear: Functional Characterization of the L-Type LecRLK Gene PbLRK138. Gene, 661, 11-21.
https://doi.org/10.1016/j.gene.2018.03.077
[11]  Di Gaspero, G. and Cipriani, G. (2003) Nucleotide Binding Site/Leucine-Rich Repeats, Pto-Like and Receptor-Like Kinases Related to Disease Resistance in Grapevine. Molecular Genetics and Genomics, 269, 612-623.
https://doi.org/10.1007/s00438-003-0884-5
[12]  Bonardi, V., Cherkis, K., Nishimura, M.T. and Dangl, J.L. (2012) A New Eye on NLR Proteins: Focused on Clarity or Diffused by Complexity? Current Opinion in Immunology, 24, 41-50.
https://doi.org/10.1016/j.coi.2011.12.006
[13]  Burdett, H., Bentham, A.R., Williams, S.J., Dodds, P.N., Anderson, P.A., Banfield, M.J. and Kobe, B. (2019) The Plant “Resistosome”: Structural Insights into Immune Signaling. Cell Host and Microbe, 26, 193-201.
https://doi.org/10.1016/j.chom.2019.07.020
[14]  Johnson, G.B., Brunn, G.J., Tang, A.H. and Platt, J.L. (2003) Evolutionary Clues to the Functions of the Toll-Like Family as Surveillance Receptors. Trends in Immunology, 24, 19-24.
https://doi.org/10.1016/S1471-4906(02)00014-5
[15]  Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2008) Molecular Biology of the Cell. 5th Edition, Garland Science, New York.
https://doi.org/10.1201/9780203833445
[16]  Schäcke, H., Rinkevich, B., Gamulin, V., Müller, I.M. and Müller, W.E. (1994) Immunoglobulin-Like Domain Is Present in the Extracellular Part of the Receptor Tyrosine Kinase from the Marine Sponge Geodia cydonium. Journal of Molecular Recognition, 7, 273-276.
https://doi.org/10.1002/jmr.300070406
[17]  Blumbach, B., Diehl-Seifert, B., Seack, J., Steffen, R., Müller, I.M. and Müller, W.E. (1999) Cloning and Expression of New Receptors Belonging to the Immunoglobulin Superfamily from the Marine Sponge Geodia cydonium. Immunogenetics, 49, 751-763.
https://doi.org/10.1007/s002510050549
[18]  Müller, W.E.G. (2001) Review: How Was Metazoan Threshold Crossed? The Hypothetical Urmetazoa. Comparative Biochemistry and Physiology Part A, 129, 433-460.
https://doi.org/10.1016/S1095-6433(00)00360-3
[19]  Grassot, J., Gouy, M., Perrière, G. and Mouchiroud, G. (2006) Origin and Molecular Evolution of Receptor Tyrosine Kinases with Immunoglobulin-Like Domains. Molecular Biology and Evolution, 23, 1232-124.
https://doi.org/10.1093/molbev/msk007
[20]  Kubrycht, J., Borecky, J. and Sigler, K. (2002) Sequence Similarities of Protein Kinase Peptide Substrates and Inhibitors: Comparison of Their Primary Structures with Immunoglobulin Repeats. Folia Microbiologica, 47, 319-358.
https://doi.org/10.1007/BF02818689
[21]  Kubrycht, J., Sigler, K., Růžička, M., Souček, P., Borecky, J. and Ježek, P. (2006) Ancient Phylogenetic Beginnings of Immunoglobulin Hypermutation. Journal of Molecular Evolution, 63, 691-706.
https://doi.org/10.1007/s00239-006-0051-9
[22]  Kubrycht, J., Sigler, K., Souček, P. and Hudeček, J. (2013) Structures Composing Protein Domains. Biochimie, 95, 1511-1524.
https://doi.org/10.1016/j.biochi.2013.04.001
[23]  Kubrycht, J., Sigler, K., Souček, P. and Hudeček, J. (2016) Antibody-Like Phosphorylation Sites in Focus of Statistically Based Bilingual Approach. Computational Molecular Bioscience, 6, 1-22.
https://doi.org/10.4236/cmb.2016.61001
[24]  Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Research, 25, 3389-3402.
https://doi.org/10.1093/nar/25.17.3389
[25]  Zhang, Z., Schäffer, A.A., Miller, W., Madden, T.L., Lipman, D.J., Koonin, E.V. and Altschul, S.F. (1998) Protein Sequence Similarity Searches Using Patterns as Seeds. Nucleic Acids Research, 26, 3986-3990.
https://doi.org/10.1093/nar/26.17.3986
[26]  Marchler-Bauer, A., Panchenko, A.R., Shoemaker, B.A., Thiessen, P.A., Geer, L.Y. and Bryant, S.H. (2002) CDD: A Database of Conserved Domain Alignments with Links to Domain Three-Dimensional Structure. Nucleic Acids Research, 30, 281-283.
https://doi.org/10.1093/nar/30.1.281
[27]  Marchler-Bauer, A., Anderson, J.B., DeWeese-Scott, C., Fedorova, N.D., Geer, L.Y., He, S., Hurwitz, D.I., Jackson, J.D., Jacobs, A.R., Lanczycki, C.J., et al. (2003) CDD: A Curated Entrez Database of Conserved domain Alignments. Nucleic Acids Research, 31, 383-387.
https://doi.org/10.1093/nar/gkg087
[28]  Marchler-Bauer, A., Lu, S., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., DeWeese-Scott, C., Fong, J.H., Geer, L.Y., Geer, R.C., Gonzales, N.R., et al. (2011) CDD: A Conserved Domain Database for the Functional Annotation of Proteins. Nucleic Acids Research, 39, D225-D229.
https://doi.org/10.1093/nar/gkq1189
[29]  Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., Geer, R.C., He, J., Gwadz, M., Hurwitz, D.I., et al. (2015) CDD: NCBI’s Conserved Domain Database. Nucleic Acids Research, 43, D222-D226.
https://doi.org/10.1093/nar/gku1221
[30]  Marchler-Bauer, A., Zheng, C., Chitsaz, F., Derbyshire, M.K., Geer, L.Y., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Lanczycki, C.J., et al. (2013) CDD: Conserved Domains and Protein Three-Dimensional Structure. Nucleic Acids Research, 41, D348-D352.
https://doi.org/10.1093/nar/gks1243
[31]  Jaroszewski, L., Rychlewski, L., Li, Z., Li, W. and Godzik, A. (2005) FFAS03: A Server for Profile-Profile Sequence Alignments. Nucleic Acids Research, 33, W284-W288.
https://doi.org/10.1093/nar/gki418
[32]  Jaroszewski, L., Li, Z., Cai, X.H., Weber, C. and Godzik, A. (2011) FFAS Server: Novel Features and Applications. Nucleic Acids Research, 39, W38-W44.
https://doi.org/10.1093/nar/gkr441
[33]  Potter, S.C., Luciani, A., Eddy, S.R., Park, Y., Lopez, R. and Finn, R.D. (2018) HMMER Web Server: 2018 Update. Nucleic Acids Research, 46, W200-W204.
https://doi.org/10.1093/nar/gky448
[34]  Lowry, R. (2001) 2x2 Contingency Table.
http://vassarstats.net/tab2x2.html
[35]  Zvárová, J. (2001) Biomedical Statistics. I. The Fundamentals of Statistics for Biomedical Fields. Karolinum, Prague.
[36]  Mefford, J. (2012) Bayesian Statistics and Bias Analysis.
http://slideplayer.com/slide/8525698
[37]  Dembo, A., Karlin, S. and Zeitouni, O. (1994) Limit Distribution of Maximal Non-Aligned Two-Sequence Segmental Score. The Annals of Probability, 22, 2022-2039.
https://doi.org/10.1214/aop/1176988493
[38]  Ming, R., VanBuren, R., Liu, Y., Yang, M., Han, Y., Li, L.T., Zhang, Q., Kim, M.J., Schatz, M.C., Campbell, M., et al. (2013) Genome of the Long-Living Sacred Lotus (Nelumbo nucifera Gaertn.). Genome Biology, 14, R41.
http://genomebiology.com/2013/14/5/R41
https://doi.org/10.1186/gb-2013-14-5-r41
[39]  Vimolmangkang, S., Deng, X., Owiti, A., Meelaph, T., Ogutu, C. and Han, Y. (2016) Evolutionary Origin of the NCSI Gene Subfamily Encoding Norcoclaurine Synthase Is Associated with the Biosynthesis of Benzylisoquinoline Alkaloids in Plants. Scientific Reports, 6, Article No. 26323.
https://doi.org/10.1038/srep26323
[40]  Bateman, A., Eddy, S.R. and Chothia, C. (1996) Members of the Immunoglobulin Superfamily in Bacteria. Protein Science, 5, 1939-1941.
https://doi.org/10.1002/pro.5560050923
[41]  Frago, E., Dicke, M. and Godfray, H.C. (2012) Insect Symbionts as Hidden Players in Insect-Plant Interactions. Trends in Ecology and Evolution, 27, 705-711.
https://doi.org/10.1016/j.tree.2012.08.013
[42]  Zhu, S. and Gao, B. (2014) Nematode-Derived Drosomycin-Type Antifungal Peptides Provide Evidence for Plant-to-Ecdysozoan Horizontal Transfer of a Disease Resistance Gene. Nature Communications, 5, 3154.
https://doi.org/10.1038/ncomms4154
[43]  Low, E.T., Alias, H., Boon, S.H., Shariff, E.M., Tan, C.Y., Ooi, L.C., Cheah, S.C., Raha, A.R., Wan, K.L. and Singh, R. (2008) Oil Palm (Elaeis guineensis Jacq.) Tissue Culture ESTs: Identifying Genes Associated with Callogenesis and Embryogenesis. BMC Plant Biology, 8, Article No. 62.
https://doi.org/10.1186/1471-2229-8-62
http://www.biomedcentral.com/1471-2229/8/62
[44]  Uthaipaisanwong, P., Chanprasert, J., Shearman, J.R., Sangsrakru, D., Yoocha, T., Jomchai, N., Jantasuriyarat, C., Tragoonrung, S. and Tangphatsornruang, S. (2012) Characterization of the Chloroplast Genome Sequence of Oil Palm (Elaeis guineensis Jacq.). Gene, 500, 172-180.
https://doi.org/10.1016/j.gene.2012.03.061
[45]  Jang, S., Hong, M.Y., Chung, Y.Y. and An, G. (1999) Ectopic Expression of Tobacco MADS Genes Modulates Flowering Time and Plant Architecture. Molecules and Cells, 9, 576-586.
[46]  Bohlmann, J., Stauber, E.J., Krock, B., Oldham, N.J., Gershenzon, J. and Baldwin, I.T. (2002) Gene Expression of 5-Epi-Aristolochene Synthase and Formation of Capsidiol in Roots of Nicotiana attenuata and N. sylvestris. Phytochemistry, 60, 109-116.
https://doi.org/10.1016/S0031-9422(02)00080-8
[47]  Yukawa, M., Tsudzuki, T. and Sugiura, M. (2006) The Chloroplast Genome of Nicotiana sylvestris and Nicotiana tomentosiformis: Complete Sequencing Confirms that the Nicotiana sylvestris Progenitor is the Maternal Genome Donor of Nicotiana tabacum. Molecular Genetics and Genomics, 275, 367-373.
https://doi.org/10.1007/s00438-005-0092-6
[48]  Sierro, N., Battey, J.N., Ouadi, S., Bovet, L., Goepfert, S., Bakaher, N., Peitsch, M.C. and Ivanov, N.V. (2013) Reference Genomes and Transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biology, 14, R60.
http://genomebiology.com/2013/14/6/R60
https://doi.org/10.1186/gb-2013-14-6-r60
[49]  Light, S., Sagit, R., Ithychanda, S.S., Qin, J. and Elofsson, A. (2012) The Evolution of Filamin-a Protein Domain Repeat Perspective. Journal of Structural Biology, 179, 289-298.
https://doi.org/10.1016/j.jsb.2012.02.010
[50]  Becker, B., Doan, J.M., Wustman, B., Carpenter, E.J., Chen, L., Zhang, Y., Wong, G.K. and Melkonian, M. (2015) The Origin and Evolution of the Plant Cell Surface: Algal Integrin-Associated Proteins and a New Family of Integrin-Like Cytoskeleton-ECM Linker Proteins. Genome Biology and Evolution, 7, 1580-1589.
https://doi.org/10.1093/gbe/evv089
[51]  Chandran, T., Sharma, A. and Vijayan, M. (2013) Generation of Ligand Specificity and Modes of Oligomerization in β-Prism I Fold Lectins. Advances in Protein Chemistry and Structural Biology. 92, 135-178.
https://doi.org/10.1016/B978-0-12-411636-8.00004-3
[52]  Fallen, K., Banerjee, S., Sheehan, J., Addison, D., Lewis, L.M., Meiler, J. and Denton, J.S. (2009) The Kir Channel Immunoglobulin Domain Is Essential for Kir1.1 (ROMK) Thermodynamic Stability, Trafficking and Gating. Channels (Austin), 3, 57-68.
https://doi.org/10.4161/chan.3.1.7817
[53]  Yereddi, N.R., Cusdin, F.S., Namadurai, S., Packman, L.C., Monie, T.P., Slavny, P., Clare, J.J., Powell, A.J. and Jackson, A.P. (2013) The Immunoglobulin Domain of the Sodium Channel β3 Subunit Contains a Surface-Localized Disulfide Bond that Is Required for Homophilic Binding. FASEB Journal, 27, 568-580.
https://doi.org/10.1096/fj.12-209445
[54]  Ashkani, J. and Rees, D.J. (2016) A Comprehensive Study of Molecular Evolution at the Self-Incompatibility Locus of Rosaceae. Journal of Molecular Evolution, 82, 128-145.
https://doi.org/10.1007/s00239-015-9726-4
[55]  Nasrallah, J.B. (2017) Plant Mating Systems: Self-Incompatibility and Evolutionary Transitions to Self-Fertility in the Mustard Family. Current Opinion in Genetics and Development, 47, 54-60.
https://doi.org/10.1016/j.gde.2017.08.005
[56]  Wilkins, K.A., Poulter, N.S. and Franklin-Tong, V.E. (2014) Taking One for the Team: Self-Recognition and Cell Suicide in Pollen. Journal of Experimental Botany, 65, 1331-1342.
https://doi.org/10.1093/jxb/ert468
[57]  James, L.C., Roversi, P. and Tawfik, D.S. (2003) Antibody Multispecificity Mediated by Conformational Diversity. Science, 299, 1362-1367.
https://doi.org/10.1126/science.1079731
[58]  Berisio, R., Ciccarelli, L., Squeglia, F., De Simone, A. and Vitagliano, L. (2012) Structural and Dynamic Properties of Incomplete Immunoglobulin-Like Fold Domains. Protein and Peptide Letters, 19, 1045-1053.
https://doi.org/10.2174/092986612802762732
[59]  Lee, T.Y., Bretaña, N.A. and Lu, C.T. (2011) PlantPhos: Using Maximal Dependence Decomposition to Identify Plant Phosphorylation Sites with Substrate Site Specificity. BMC Bioinformatics, 12, Article No. 261.
http://www.biomedcentral.com/1471-2105/12/261
https://doi.org/10.1186/1471-2105-12-261
[60]  Yoshiyama, K.O., Kobayashi, J., Ogita, N., Ueda, M., Kimura, S., Maki, H. and Umeda, M. (2013) ATM-Mediated Phosphorylation of SOG1 Is Essential for the DNA Damage Response in Arabidopsis. EMBO Reports, 14, 817-822.
https://doi.org/10.1038/embor.2013.112
[61]  Zulawski, M., Braginets, R. and Schulze, W.X. (2013) PhosPhAt Goes Kinases Searchable Protein Kinase Target Information in the Plant Phosphorylation Site Database PhosPhAt. Nucleic Acids Research, 41, D1176-D1184.
https://doi.org/10.1093/nar/gks1081
[62]  Takagi, M., Sakamoto, T., Suzuki, R., Nemoto, K., Obayashi, T., Hirakawa, T., Matsunaga, T.M., Kurihara, D., Nariai, Y., Urano, T., Sawasaki, T. and Matsunaga, S. (2016) Plant Aurora Kinases Interact with and Phosphorylate Transcription Factors. Journal of Plant Research, 129, 1165-1178.
https://doi.org/10.1007/s10265-016-0860-x
[63]  Gnad, F., Forner, F., Zielinska, D.F., Birney, E., Gunawardena, J. and Mann, M. (2010) Evolutionary Constraints of Phosphorylation in Eukaryotes, Prokaryotes, and Mitochondria. Molecular and Cellular Proteomics, 9, 2642-2653.
https://doi.org/10.1074/mcp.M110.001594
[64]  Walker, J.C. (1993) Receptor-Like Protein Kinase Genes of Arabidopsis thaliana. The Plant Journal, 3, 451-456.
https://doi.org/10.1111/j.1365-313X.1993.tb00164.x
[65]  Hirano, M., Guo, P., McCurley, N., Schorpp, M., Das, S., Boehm, T. and Cooper, M.D. (2013) Evolutionary Implications of a Third Lymphocyte Lineage in Lampreys. Nature, 501, 435-438.
https://doi.org/10.1038/nature12467
[66]  Li, D., Deng, Z., Qin, B., Liu, X. and Men, Z. (2012) De Novo Assembly and Characterization of Bark Transcriptome Using Illumina Sequencing and Development of EST-SSR Markers in Rubber Tree (Hevea brasiliensis Muell. Arg.). BMC Genomics, 13, Article No. 192.
http://www.biomedcentral.com/1471-2164/13/192
https://doi.org/10.1186/1471-2164-13-192
[67]  Vázquez, N., Rocha, S., López-Fernández, H., Torres, A., Camacho, R., Fdez-Riverola, F., Vieira, J., Vieira, C.P. and Reboiro-Jato, M. (2019) EvoPPI 1.0: A Web Platform for Within- and Between-Species Multiple Interactome Comparisons and Application to Nine PolyQ Proteins Determining Neurodegenerative Diseases. Interdisciplinary Sciences, Computational Life Sciences, 11, 45-56.
https://doi.org/10.1007/s12539-019-00317-y
[68]  Hirayama, T. and Oka, A. (1992) Novel Protein Kinase of Arabidopsis thaliana (APK1) That Phosphorylates Tyrosine, Serine and Threonine. Plant Molecular Biology, 20, 653-662.
https://doi.org/10.1007/BF00046450
[69]  Hanks, S.K., Quinn, A.M. and Hunter, T. (1988) The Protein Kinase Family: Conserved Features and Deduced Phylogeny of the Catalytic Domains. Science, 241, 42-52.
https://doi.org/10.1126/science.3291115
[70]  Stancik, I.A., Šestak, M.S., Ji, B., Axelson-Fisk, M., Franjevic, D., Jers, C., Domazet-Lošo, T. and Mijakovic, I. (2018) Serine/Threonine Protein Kinases from Bacteria, archaea and Eukarya Share a Common Evolutionary Origin Deeply Rooted in the Tree of Life. Journal of Molecular Biology, 430, 27-32.
https://doi.org/10.1016/j.jmb.2017.11.004
[71]  Rudrabhatla, P., Reddy, M.M. and Rajasekharan, R. (2006) Genome-Wide Analysis and Experimentation of Plant Serine/Threonine/Tyrosine-Specific Protein Kinases. Plant Molecular Biology, 60, 293-319.
https://doi.org/10.1007/s11103-005-4109-7
[72]  Klaus-Heisen, D., Nurisso, A., Pietraszewska-Bogiel, A., Mbengue, M., Camut, S., Timmers, T., Pichereaux, C., Rossignol, M., Gadella, T.W., Imberty, A., Lefebvre, B. and Cullimore, J.V. (2011) Structure-Function Similarities between a Plant Receptor-Like Kinase and the Human Interleukin-1 Receptor-Associated Kinase-4. Journal of Biological Chemistry, 286, 11202-11210.
https://doi.org/10.1074/jbc.M110.186171
[73]  King, N. and Carroll, S.B. (2001) A Receptor Tyrosine Kinase from Choanoflagellates: Molecular Insights into Early Animal Evolution. Proceedings of National Academy of Sciences of the United States of America, 98, 15032-15037.
https://doi.org/10.1073/pnas.261477698
[74]  Schultheiss, K.P., Craddock, B.P., Tong, M., Seeliger, M. and Miller, W.T. (2013) Metazoan-Like Signaling in a Unicellular Receptor Tyrosine Kinase. BMC Biochemistry, 14, Article No. 4.
http://www.biomedcentral.com/1471-2091/14/4
https://doi.org/10.1186/1471-2091-14-4
[75]  Mohanty, S., Oruganty, K., Kwon, A., Byrne, D.P., Ferries, S., Ruan, Z., Hanold, L.E., Katiyar, S., Kennedy, E.J., Eyers, P.A. and Kannan, N. (2016) Hydrophobic Core Variations Provide a Structural Framework for Tyrosine Kinase Evolution and Functional Specialization. PLoS Genetics, 12, e1005885.
https://doi.org/10.1371/journal.pgen.1005885
[76]  Hakim, I., Amariglio, N., Grossman, Z., Simoni-Brok, F., Ohno, S. and Rechavi, G. (1994) The Genome of the I Human Transposable Repetitive Elements Is Composed of a Basic Motif Homologous to an Ancestral Immunoglobulin Gene Sequence. Proceedings of National Academy of Sciences of the United States of America, 91, 7967-7969.
https://doi.org/10.1073/pnas.91.17.7967
[77]  Pang, E. and Lin, K. (2010) Yeast Protein-Protein Interaction Binding Sites: Prediction from the Motif-Motif, Motif-Domain and Domain-Domain Levels. Molecular Biosystems, 6, 2164-2173.
https://doi.org/10.1039/c0mb00038h
[78]  Wang, F., Liu, M., Song, B., Li, D., Pei, H., Guo, Y., Huang, J. and Zhang, D. (2012) Prediction and Characterization of Protein-Protein Interaction Networks in Swine. Proteome Science, 10, Article No. 2.
http://www.proteomesci.com/content/10/1/2
https://doi.org/10.1186/1477-5956-10-2
[79]  Kubrycht, J., Sigler, K. and Souček, P. (2012) Virtual Interactomics of Proteins from Biochemical Standpoint. Molecular Biology International, 2012, Article ID: 976385.
https://doi.org/10.1155/2012/976385

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133