Introduction: the roots of Leptadenia hastata, (L hastata) are remedies from the Senegalese pharmacopoeia and are as widely used as the leaves. However, few researchers have devoted themselves to their toxicity, unlike the leaves. However, in the traditional pharmacopoeia, the indications for use are very different.
The aim of our study was to study the effect of the administration of methanolic extracts of roots of L hastata on renal tissue, using an animal model. Materials and Methods: a cohort of 18 rats was studied with a random distribution of the animals in 3 groups (n = 6). The first group was the control group. The treated groups (Group II and III) received the methanolic extract of L. hastata with an administration of 500 mg / kg / day and 1000 mg / kg / day respectively, for 28 days. Results: The dose of 1000 mg / kg / day was lethal in group III, from the first week in females. Serum creatinine was significantly higher in rats given the root extract. There was kidney damage with vacuolar degeneration starting at 500 mg / kg / day. The lesions were more severe in group III with glomerular involvement characterized by retraction in the renal corpuscles. Conclusion: If the leaves of L hastata seem to be safe for consumption according to the majority of authors in the literature, the roots of this same plant could be harmful. In addition to the lethality observed at the doses tested, the lesions in the renal parenchyma would be dose-dependent.
References
[1]
Burkill, H.M. (1997) Useful Plants of Western Tropical African. Royal Botanic Garden, Kew, 4,969.
[2]
Ojochegbe, A.B., Adejoh, D.P., Boniface, M.T., Duniya, S.V. and Iyaji, A. (2019) Activity of Methanol Extract of Leptadenia hastata Leaves in Alcohol-Induced Liver Injury. American Journal of Biomedical Sciences & Research, 4, 142-146.
https://doi.org/10.34297/AJBSR.2019.04.000785
[3]
Umaru, I.J., Badruddin, F.A. and Umaru, K.I. (2018) Effects of Leptadenia Extract on Artemia Salina and Dose Rate on Organs of Ulcer Induced Rats. Asian Journal of Science and Technology, 9, 8436-8439.
[4]
Seck, M., Sall, C., Gueye, P.M., Seck, I., Dioum, M.D., Lembachar, Z., Guere, R.S., Fall, D., Fall, M. and Dieye, T.N. (2015) Etude de l’activité antifalcémiante d’extraits de racines de Leptadenia hastata Decne. (Asclepiadacae). International Journal of Biological and Chemical Sciences, 9, 1375-1383.
https://doi.org/10.4314/ijbcs.v9i3.22
[5]
Tijburg, L.B.M., Malvy, D., Mattern, T., Folts, J.D., Weisgerber, U.M., Katan, M.B. and Brucker, E. (2000) Flavoinoïdes du thé et maladies cardio-vasculaires. Cahiers de nutrition et de Diététique, 35, 135.
[6]
Sanda, K.A., Sandabe, U.K., Sanda, F.A., Tijjani, M.B., Majama, Y.B. and Gambo, B.G. (2013) Phytochemical Screening of the Aqueous Root Extract of Leptadenia hastata (Asclepiadaceae) in Maiduguri, Northern Nigeria. Asian Journal of Biochemistry, 8, 33-35. https://doi.org/10.3923/ajb.2013.33.35
[7]
Keenan, C.M., Baker, J., Bradley, A., Goodman, D.G., Harada, T., Herbert, R., Kaufmann, W., Kellner, R., Mahler, B., Meseck, E., Nolte, T., Rittinghausen, S., Vahle, J. and Yoshizawa, K. (2015) International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Progress to Date and Future Plans. Toxicologic Pathology, 43, 730-732. https://doi.org/10.1177/0192623314560031
[8]
Bayala, B., Halabalaki, M., Ouedraogo, A., Keiler, M.A., Tamboura, H.H. and Vollmer, G. (2018) Leptadenia hastata Pers. (Decne) a Promising Source for Natural Compounds in Biomedical Applications. American Journal of Drug Discovery and Development, 8, 1-10. https://doi.org/10.3923/ajdd.2018.1.10
[9]
Olivier-Bover, B.E. (1986) Medicinal Plants in Tropical West Africa. Cambridge University Press, Cambridge, 375. https://doi.org/10.1017/CBO9780511753114
[10]
Lapo, R.A., Assane, M., Pangui, L.J. and Gbati, O.B. (2003) Study of the Abortifacient Effects of Leptadenia hastata Pers. (Decne). Dakar Medical, 48, 222-225.
[11]
Egunyomi, A., Moody, J.O. and Eletu, O.M. (2009) Antisickling Activities of Ethnomedicinal Plant Recipes Used for Ekeke Management of Sickle Cell Anemia in Ibadan, Nigeria. African Journal of Biotechnology, 8, 20-25.
[12]
Sofowora, E.A., Isaac-Sodeye, W.A. and Ogunkoya, L.O. (1975) African Medicinal Plants Isolation and Characterization of an Anti-Sickling Agents from Fagara zanthoxyloides Root. Lloydia, 34, 169-174.
[13]
Ghosh, D. and Scheepens, A. (2009) Vascular Action of Polyphenols. Molecular Nutrition & Food Research, 53, 322-331. https://doi.org/10.1002/mnfr.200800182
[14]
Ogungbemi, S.I., Anigbogu, C.N., Kehinde, M.O. and Jaja, S.I. (2013) L-arginine Increases Nitricoxide and Attenuates Pressor and Heart Rate Responses to Change in Posture in Sickle Cell Anemia Subjects. Nigerian Journal of Physiologycal Sciences, 28, 45-50.
[15]
Maurice, N.A., Garba, A., Maina, V.A., Baraya, Y.S., Owada, A.H., Agang, I., Hambolu, S.E. and Sada, A. (2011) Acute Toxicity Effect of the Leaf Extract of Leptadenia hastata (pers.) in White Albino Rats. Nigerian Journal of Parasitology, 32, 247-250.
[16]
Bayala, B., Pellicer-Rubio, M.T., Bassole, I.H.N., Belemtougri, R., Tamboura, H.H. and Malpaux, B. (2011) Effects of Aqueous Extracts of Leptadenia hastate (pers.) decne. (asclepediace ae) on Male Reproductive Functions Using Castrated Immature Rats. Research Journal of Medicinal Plant, 5, 180-188.
https://doi.org/10.3923/rjmp.2011.180.188