全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Study on the Reverse Heat Conduction Behavior of Steel

DOI: 10.4236/ojsst.2020.101002, PP. 24-31

Keywords: Steel, Radiant Heat Flux, Semi-Empirical Radiation Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper analyses the existing literature, andconsidered the new problems caused by the burning accident of thermal insulation materials attached to the steel structure in recent years.In the process of combustion, thermal insulation materials will drip and melt, producing a large amount of liquid fuel. The combustion of thermal insulation materials attached to steel (diameter?longer than 0.2m) can be regarded as large pool fire combustion, and a mathematical model is established to study the reverse thermal conduction behavior of the combustion of combustible materials attached to steel.

References

[1]  Wang, X.-Z., Fan, Y.-Q., Zhou, K.-B. and Yu, Y. (2018) Multi-Layer Cylindrical Flame Model for Predicting Radiant Heat Flux from Pool Fire. Procedia Engineering, 211, 768-777.
https://doi.org/10.1016/j.proeng.2017.12.074
[2]  Zhou, K.B. and Wang, X.Z. (2019) Thermal Radiation Modelling of Pool Fire with Consideration on the Nonuniform Temperature in Flame Volume. International Journal of Thermal Sciences, 138, 12-23.
https://doi.org/10.1016/j.ijthermalsci.2018.12.033
[3]  Mudan, K.S. (1984) Thermal Radiation Hazards from Hydrocarbon Pool Fires. Progress in Energy and Combustion Science, 10, 59.
https://doi.org/10.1016/0360-1285(84)90119-9
[4]  Rogers, F.E. and Ohlemiller, T.J. (1981) Pyrolysis Kinetics of a Polyurethane Foam by Thermogravimetry; A General Kinetic Method. Journal of Macromolecular Science Chemistry, 15, 169-185.
https://doi.org/10.1080/00222338108066438
[5]  Lefebvre, J., Le, B.M., Bastin, B., et al. (2003) Flexible Polyurethane Foams: Flammability. Journal of Fire Sciences, 21, 343-367.
https://doi.org/10.1177/0734904103035369
[6]  Hou, Y., Cheng, X., Liu, S., et al. (2015) Experimental Study on Upward Flame Spread of Exterior Wall Thermal Insulation Materials. Energy Procedia, 66, 161-164.
https://doi.org/10.1016/j.egypro.2015.02.085
[7]  Ma, X., Ran, T. and Fang, T.Y. (2018) Thermal and Fire Risk Analysis of Low Pressure on Building Energy Conservation Material Flexible Polyurethane with Various Inclined Facade Constructions. Construction and Building Materials, 167, 449-456.
https://doi.org/10.1016/j.conbuildmat.2018.02.027
[8]  Ma, X., Ran, T. and Xie, Q.Y. (2015) Experimental Study on the Burning Behaviors of Three Typical Thermoplastic Materials Liquid Pool Fire with Different Mass Feeding Rates. Journal of Thermal Analysis and Calorimetry, 123, 329-337.
https://doi.org/10.1007/s10973-015-4898-0
[9]  Ma, X. (2015) Study on Downward Flame Spread Behavior of Flexible Polyurethane Board in External Heat Flux. Journal of Thermoplastic Composite Materials, 28, 1693-1707.
https://doi.org/10.1177/0892705715569826
[10]  Tu, R., Zeng, Y., Fang, J. and Zhang, Y.M. (2016) The Influence of Low Air Pressure on Horizontal Flame Spread over Flexible Polyurethane Foam and Correlative Smoke Productions. Applied Thermal Engineering, 94, 133-140.
https://doi.org/10.1016/j.applthermaleng.2015.10.108
[11]  Ma, X., Tu, R. and Xie, Q.Y. (2015) Study on Downward Flame Spread Behavior of Flexible Polyurethane Board in External Heat Flux. Journal of Thermoplastic Composite Materials, 28, 1693-1707.
https://doi.org/10.1177/0892705715569826
[12]  Ma, X., et al. (2018) Experimental Study on Thermal Safety Analysis of Flexible Polyurethane at Various Facade Inclined Structures under Low Ambient Pressure Condition. Engineering Structures, 176, 11-19.
https://doi.org/10.1016/j.engstruct.2018.08.106
[13]  Ma, X., Tu, R., Ding, C., Zeng, Y., Wang, Y. and Fang, T.Y. (2018) Thermal and Fire Risk Analysis of Low Pressure on Building Energy Conservation Material Flexible Polyurethane with Various Inclined Facade Constructions. Construction and Building Materials, 167, 449-456.
https://doi.org/10.1016/j.conbuildmat.2018.02.027
[14]  Blinov, V.I. and Khudyakov, G.N. (1961) Diffusion Burning of Liquids, Army Engineer Research and Development Labs Fort Belvoir VA.
[15]  Hottel, H.C. (1959) Certain Laws Governing the Diffusive Burning of Liquids: A Review. Fire Research Abstracts and Reviews, 1, 41-44.
[16]  Hu, C., Zhu, G.Q., Wu, W.H. and Shen, Y.Z. (2011) Calculation and Analysis of Pool Fire Hazard Model. Fire Science and Technology, 30, 570-573.
[17]  Li, Y. and Kang, Q.C. (2011) Application of Improved Point Source Method in Fire Radiation Calculation. Journal of China University of Petroleum, 35, 140-143.
[18]  Zhou, K.B., Jiang, J.C. and Zhang, X. (2016) Flame Pulsation-Based Model for Predicting Radiant Heat Flux of Pool Fire. Journal of Nanjing Tech University (Natural Science Edition), 38, 114-118.
[19]  Shen, J.-G., Ji, J.-W. and Wang, Z.-Y. (2017) Thermal Radiation Calculation of Conical Flame. Fire Science and Technology, 36, 1348-1351.
[20]  Heskestad, G. (1995) Fire Plumes, SFPE Handbook of Fire Protection Engineering. 2nd Edition, National Fire Protection Association, Quincy.
[21]  Ditch, B., de Ris, J., Blanchat, T., Chaos, M., Bill Jr., R. and Dorofeev, S. (2013) Pool Fires: An Empirical Correlation. Combustion and Flame, 160, 2964-2974.
https://doi.org/10.1016/j.combustflame.2013.06.020
[22]  Karatas, A., Intasopa, G. and Gülder, O. (2013) Sooting Behaviour of n-Heptane Laminar Diffusion Flames at High Pressures. Combustion and Flame, 160, 1650-1656.
https://doi.org/10.1016/j.combustflame.2013.03.008
[23]  Drysdale, D. (2011) An Introduction to Fire Dynamics. 3nd Edition, John Wiley & Sons, Ltd., New York.
https://doi.org/10.1002/9781119975465
[24]  Fang, J., Wang, J.W., Tu, R., Shang, R., Zhang, Y.-M. and Wang, J.-J. (2018) Optical Thickness of Emissivity for Pool Fire Radiation. International Journal of Thermal Sciences, 124, 338-343.
https://doi.org/10.1016/j.ijthermalsci.2017.10.023
[25]  Shi, C.L., Liu, W., Hong, W.J., Zhong, M.H. and Zhang, X.K. (2019) A Modified Thermal Radiation Model with Multiple Factors for Investigating Temperature Rise around Pool Fire. Journal of Hazardous Materials, 379, Article ID: 120801.
https://doi.org/10.1016/j.jhazmat.2019.120801
[26]  Zhang, X.L., Hu, L.H., Wu, L. and Kostiuk, L.W. (2019) Flame Radiation Emission from Pool Fires under the Influence of Cross Airflow and Ambient Pressure. Combustion and Flame, 202, 243-251.
https://doi.org/10.1016/j.combustflame.2019.01.015
[27]  Li, Y.T., et al. (2014) Large-Scale Experimental Study on the Spread and Burning Behavior of Continuous Liquid Fuel Spill Fires on Water. Journal of Fire Sciences, 32, 391-405.
https://doi.org/10.1177/0734904114526956
[28]  Li, Y.T., Xu, D.D., Huang, H., Zhao, J.L. and Shuai, J. (2020) An Experimental Study on the Burning Rate of a Continuously Released n-Heptane Spill Fire on an Open Water Surface. Journal of Loss Prevention in the Process Industries, 63, Article ID: 104033.
https://doi.org/10.1016/j.jlp.2019.104033

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133