In the first step, the Ehrenfest reasoning concerning the adiabatic invariance of the angular orbital momentum is applied to the electron motion in the hydrogen atom. It is demonstrated that the time of the energy emission from the quantum level n+1 to level n can be deduced from the orbital angular momentum examined in the hydrogen atom. This time is found precisely equal to the time interval dictated by the Joule-Lenz law governing the electron transition between the levels n+1 and n. In the next step, the mechanical parameters entering the quantum systems are applied in calculating the time intervals characteristic for the electron transitions. This concerns the neighbouring energy levels in the hydrogen atom as well as the Landau levels in the electron gas submitted to the action of a constant magnetic field.
References
[1]
Planck, M. (1932) Einführung in die Theorie der Wärme. S. Hirzel, Leipzig.
[2]
Einstein A. (1917) The Quantum Theory of Radiation. Physikalische Zeitschrift, 18, 121.
[3]
Van der Waerden B. L. (1967) Sources of Quantum Mechanics. Dover, New York.
[4]
Schiff L. I. (1968) Quantum Mechanics. 3rd Edition, McGraw-Hill, New York.
[5]
Slater J. C. (1960) Quantum Theory of the Atomic Structure. Volume 1, McGraw-Hill, New York.
[6]
Ehrenfest, P. (1916) Adiabatische Invarianten und Quantentheorie. Annalen der Physik, 51, 327-352. https://doi.org/10.1002/andp.19163561905
[7]
Ehrenfest, P. (1917) Adiabatic Invariants and the Theory of Quanta. Philosophical Magazine, 33, 500-513. https://doi.org/10.1080/14786440608635664
[8]
Lass, H. (1950) Vector and Tensor Analysis. McGraw-Hill, New York. https://doi.org/10.1119/1.1932684
[9]
Olszewski, S. (2015) Non-Probabilistic Approach to the Time of Energy Emission in Small Quantum Systems. Journal of Modern Physics, 6, 1277-1288. https://doi.org/10.4236/jmp.2015.69133
[10]
Olszewski, S. (2016) Quantum Aspects of the Joule-Lenz Law. Journal of Modern Physics, 7, 162-174. https://doi.org/10.4236/jmp.2016.71018
[11]
Olszewski, S. (2016) The Bohr Model of the Hydrogen Atom Revisited. Reviews in Theoretical Science, 4, 336-352. https://doi.org/10.1166/rits.2016.1066
[12]
Olszewski, S. (2019) Time Intervals of the Electron Transitions between the Energy States in the Hydrogen Atom Calculated in a Non-Probabilistic Way. Journal of Modern Physics, 10, 1522-1531. https://doi.org/10.4236/jmp.2019.1013101
[13]
Sommerfeld A. (1931) Atombau und Spektrallinien. 5th Edition, Vieweg, Braunschweig.
[14]
Olszewski, S. (2016) Emission Intensity in the Hydrogen Atom Calculated from a Non-Probabilistic Approach to the Electron Transitions. Journal of Modern Physics, 7, 827-851. https://doi.org/10.4236/jmp.2016.78076
[15]
Olszewski, S. (2016) Semiclassical and Quantum-Mechanical Formalism Applied in Calculating the Emission Intensity of the Atomic Hydrogen. Journal of Modern Physics, 7, 1004-1020. https://doi.org/10.4236/jmp.2016.79091
[16]
Olszewski, S. (2017) Time Intervals of the Electron Transitions and Intensity Spectrum of the Hydrogen Atom. Journal of Computational and Theoretical Nanoscience, 14, 4086-4099. https://doi.org/10.1166/jctn.2017.6791
[17]
Condon, E.U. and Shortley, G.M. (1970) The Theory of Atomic Spectra. University Press, Cambridge (UK).
[18]
Landau, L.D. (1930) Diamagnetismus der Metalle. Zeitschrift für Physik, 64, 629-637. https://doi.org/10.1007/BF01397213
[19]
Slater, J.C. (1967) Quantum Theory of Molecules and Solids. Volume 3, McGraw-Hill, New York.
[20]
Kittel, C. (1987) Quantum Theory of Solids. 2nd Edition, Wiley, New York.
[21]
Fock, V. (1928) Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld. Zeitschrift für Physik, 48, 446-448. https://doi.org/10.1007/BF01390750
[22]
Dingle, R.B. (1952) Some Magnetic Properties of Metals. I. General Introduction, and Properties of Large Systems of Electrons. Proceedings of the Royal Society (London), A211, 500-525. https://doi.org/10.1098/rspa.1952.0055