In this paper, we study a drive-response discrete-time dynamical system which has been coupled using convex functions and we introduce a synchronization threshold which is crucial for the synchronizing procedure. We provide one application of this type of coupling in synchronized cycles of a generalized Nicholson-Bailey model. This model demonstrates a rich cascade of complex dynamics from stable fixed point to periodic orbits, quasi periodic orbits and chaos. We explain how this way of coupling makes these two chaotic systems starting from very different initial conditions, quickly get synchronized. We investigate the qualitative behavior of GNB model and its synchronized model using time series analysis and its long time dynamics by the help of bifurcation diagram.
References
[1]
Lorenz, E.N. (1963) Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20, 130-141.
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[2]
Pikovsky, A., Kurths, J., Rosenblum, M. and Kurths, J. (2003) Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge, 12.
[3]
Fujisaka, H. and Yamada, T. (1983) Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. Progress of Theoretical Physics, 69, 32-47.
https://doi.org/10.1143/PTP.69.32
[4]
Yamada, T. and Fujisaka, H. (1983) Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. II: The Mapping Approach. Progress of Theoretical Physics, 70, 1240-1248. https://doi.org/10.1143/PTP.70.1240
[5]
Pecora, L.M. and Carroll, T.L. (1990) Synchronization in Chaotic Systems. Physical Review Letters, 64, 821. https://doi.org/10.1103/PhysRevLett.64.821
[6]
Balmforth, N.J., Jacobson, A. and Provenzale, A. (1999) Synchronized Family Dynamics in Globally Coupled Maps. Chaos: An Interdisciplinary Journal of Nonlinear Science, 9, 738-754. https://doi.org/10.1063/1.166448
[7]
Moran, P.A.P. (1953) The Statistical Analysis of the Canadian Lynx Cycle. Australian Journal of Zoology, 1, 291-298. https://doi.org/10.1071/ZO9530291
[8]
Bulmer, M.G. (1974) A Statistical Analysis of the 10-Year Cycle in Canada. The Journal of Animal Ecology, 47, 701-718. https://doi.org/10.2307/3532
[9]
Korpimäki, E. and Krebs, C.J. (1996) Predation and Population Cycles of Small Mammals: A Reassessment of the Predation Hypothesis. BioScience, 46, 754-764.
https://doi.org/10.2307/1312851
[10]
Ranta, E., Kaitala, V. and Lundberg, P. (1997) The Spatial Dimension in Population Fluctuations. Science, 278, 1621-1623.
https://doi.org/10.1126/science.278.5343.1621
[11]
Gurney, W.S.C., Crowley, P.H. and Nisbet, R.M. (1992) Locking Life-Cycles onto Seasons: Circle-Map Models of Population Dynamics and Local Adaptation. Journal of Mathematical Biology, 30, 251. https://doi.org/10.1007/BF00176151
[12]
Blasius, B. and Stone, L. (2000) Chaos and Phase Synchronization in Ecological Systems. International Journal of Bifurcation and Chaos, 10, 2361-2380.
https://doi.org/10.1142/S0218127400001511
[13]
Earn, D.J.D., Rohani, P. and Grenfell, B.T. (1998) Persistence, Chaos and Synchrony in Ecology and Epidemiology. Proceedings of the Royal Society of London. Series B: Biological Sciences, The Royal Society, 265, 7-10.
https://doi.org/10.1098/rspb.1998.0256
[14]
Azizi, T. and Kerr, G. (2020) Chaos Synchronization in Discrete-Time Dynamical Systems with Application in Population Dynamics. Journal of Applied Mathematics and Physics, 8, 406-423. https://doi.org/10.4236/jamp.2020.83031
[15]
Kolmogorov, A.N. and Fomin, S.V. (1957) Elements of the Theory of Functions and Functional Analysis.
[16]
Wiggins, S. (2003) Introduction to Applied Nonlinear Dynamical Systems and Chaos. Princeton University Press, Princeton, NJ, 2.
[17]
Grobman, D.M. (1959) Homeomorphism of Systems of Differential Equations. Doklady Akademii Nauk SSSR, 128, 880-881.
[18]
Hartman, P. (1960) On Local Homeomorphisms of Euclidean Spaces. Boletín de la Sociedad Matemática Mexicana, 5, 220-241.
[19]
Hartman, P. (1960) A Lemma in the Theory of Structural Stability of Differential Equations. Proceedings of the American Mathematical Society, 11, 610-620.
https://doi.org/10.1090/S0002-9939-1960-0121542-7
[20]
Conrad, K. (2014) The Contraction Mapping Theorem, II.
[21]
Russo, G. (2010) Analysis, Control and Synchronization of Nonlinear Systems and Networks via Contraction Theory: Theory and Applications. University of Naples Federico II, Italy.
[22]
Angeli, D. (2002) A Lyapunov Approach to Incremental Stability Properties. IEEE Transactions on Automatic Control, 47, 410-421. https://doi.org/10.1109/9.989067
[23]
Beddington, J.R., Free, C.A. and Lawton, J.H. (1975) Host-Parasitoid Dynamics of a Generalized Thompson Model. Nature, 255, 719-732.
[24]
Nicholson, A.J. and Bailey, V.A. (1935) The Balance of Animal Populations Part I. Proceedings of the Zoological Society of London, 105, 551-598.
https://doi.org/10.1111/j.1096-3642.1935.tb01680.x
[25]
Asheghi, R. (2014) Bifurcations and Dynamics of a Discrete Predator: Prey System. Journal of Biological Dynamics, 8, 161-186.
https://doi.org/10.1080/17513758.2014.927596
[26]
Kapçak, S., Ufuktepe, ü. and Elaydi, S. (2013) Stability and Invariant Manifolds of a Generalized Beddington Host-Parasitoid Model. Journal of Biological Dynamics, 148, 233-253. https://doi.org/10.1080/17513758.2013.849764
[27]
Ricker, W.E. (1954) Stock and Recruitment. Journal of the Fisheries Board of Canada, 11, 559-623. https://doi.org/10.1139/f54-039
[28]
Azizi, T., et al. (2015) Dynamics of a Discrete-Time Plant-Herbivore Model. Caspian Journal of Mathematical Sciences, 4, 241-256.