|
基于协同进化算法的支持向量回归径流建模研究与应用
|
Abstract:
[1] | Kisi, O., Shiri, J. and Tombul, M. (2013) Modeling Rainfall-Runoff Process Using Soft Computing Techniques. Computers & Geosciences, 51, 108-117. https://doi.org/10.1016/j.cageo.2012.07.001 |
[2] | Rezaie-Balf, M., Zahmatkesh, Z. and Kim, S. (2017) Soft Computing Techniques for Rainfall-Runoff Simulation: Local Non-Parametric Paradigm vs. Model Classification Methods. Water Resources Management, 31, 3843-3865.
https://doi.org/10.1007/s11269-017-1711-9 |
[3] | Kumar, D., Sarthi, P.P. and Ranjan, P. (2016) Rainfall-Runoff Modeling Using Computational Intelligence Techniques. International Conference on Advances in Computing, Com-munications and Informatics, Jaipur, 21-24 September 2016, 800-806. https://doi.org/10.1109/ICACCI.2016.7732144 |
[4] | Wu, J.S. and Xie, Y.S. (2019) Hybrid Support Vector Re-gression with Parallel Co-Evolution Algorithm Based on GA and PSO for Forecasting Monthly Rainfall. Journal of Software Engineering and Applications, 12, 524-539.
https://doi.org/10.4236/jsea.2019.1212032 |
[5] | Granata, F., Gargano, R. and De Marinis, G. (2016) Support Vector Regression for Rainfall-Runoff Modeling in Urban Drainage: A Comparison with The EPA’s Storm Water Management Mode. Water, 8, 69.
https://doi.org/10.3390/w8030069 |
[6] | Kan, G., Li, J., Zhang, X., et al. (2017) A New Hybrid Data-Driven Model for Event-Based Rainfall-Runoff Simulation. Neural Computing and Applications, 28, 2519-2534. https://doi.org/10.1007/s00521-016-2200-4 |
[7] | Talei, A., Chua, L. H. and Quek, C. (2010) A Novel Application of a Neuro-Fuzzy Computational Technique in Event-Based Rainfall-Runoff Modeling. Expert Systems with Applica-tions, 37, 7456-7468.
https://doi.org/10.1016/j.eswa.2010.04.015 |
[8] | Wu, J.S., Jin, L. and Liu, M.Z. (2015) Evolving RBF Neural Networks for Rainfall Prediction Using Hybrid Particle Swarm Optimization and Genetic Algorithm. Neurocomputing, 148, 136-142.
https://doi.org/10.1016/j.neucom.2012.10.043 |
[9] | Wu, J.S. (2018) Co-Evolution Algorithm for Parameter Optimization of RBF Neural Networks for Rainfall-Runoff Forecasting. In: Huang, D.S., Bevilacqua, V., Premaratne, P. and Gupta, P., Eds., Intelligent Computing Theories and Application. ICIC, Lecture Notes in Computer Science, Springer, Cham, 195-206.
https://doi.org/10.1007/978-3-319-95930-6_19 |
[10] | Song, X., Kong, F., Zhan, C., et al. (2012) Hybrid Optimization Rainfall-Runoff Simulation Based on Xinanjiang Model and Artificial Neural Network. Journal of Hydrologic Engineering, 17, 1033-1041.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000548 |
[11] | Vapnik, V. (2013) The Nature of Statistical Learn-ing Theory. Springer Science & Business Media, Cham. |
[12] | 邓乃杨, 田英杰. 数据挖掘中的新方法-支持向量机[M]. 北京: 科学出版社, 2004. |
[13] | 朱波, 刘飞. 基于优化多核支持向量回归的制造过程均值偏移幅度估计[J]. 中国机械工程, 2014, 25(3): 630-635. |
[14] | 汪洪桥, 孙富春, 蔡艳宁, 等. 多核学习方法[J]. 自动化学报, 2010, 36(8): 1037-1050. |
[15] | Salat, R. and Salat, K. (2010) New Approach to Predicting Proconvulsant Activity with the Use of Support Vector Regression. Computers in Biology and Medicine, 42, 575-581. https://doi.org/10.1016/j.compbiomed.2012.02.001 |
[16] | Kaytez, F., Taplamacioglu, M.C., Cam, E., et al. (2015) Forecasting Electricity Consumption: A Comparison of Regression Analysis, Neural Networks and Least Squares Support Vector Machines. International Journal of Electrical Power & Energy Systems, 67, 431-438. https://doi.org/10.1016/j.ijepes.2014.12.036 |
[17] | 常群. 支持向量机的核方法及其模型选择[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2007. |
[18] | 罗林开. 支持向量机的核选择[D]: [博士学位论文]. 厦门: 厦门大学, 2007. |
[19] | 汪延华. 支持向量机模型选择研究[D]: [博士学位论文]. 北京: 北京交通大学, 2009. |
[20] | 廖杰, 王文圣, 李跃清, 等. 支持向量机及其在径流预测中的应用[J]. 四川大学学报(工程科学版), 2006, 38(6): 24-29. |
[21] | López, F.J.M., Puertas, S.M. and Arriaza, J.A.T. (2014) Training of Support Vector Machine with the Use of Multivariate Normalization. Applied Soft Computing, 24, 1105-1111. https://doi.org/10.1016/j.asoc.2014.08.020 |
[22] | Güraks?n, G.E., Hakl?, H. and U?uz, H. (2014) Support Vector Machines Classification Based on Particle Swarm Optimization for Bone Age Determination. Applied Soft Computing, 24, 597-602.
https://doi.org/10.1016/j.asoc.2014.08.007 |
[23] | Sheikhpour, R., Sarram, M.A. and Sheikhpour, R. (2016) Particle Swarm Optimization for Bandwidth Determination and Feature Selection of Kernel Density Estimation Based Classi-fiers in Diagnosis of Breast Cancer. Applied Soft Computing, 40, 113-131. https://doi.org/10.1016/j.asoc.2015.10.005 |
[24] | Wu, J.S., Jin, L. and Liu, M. (2010) A Hybrid Support Vector Regression Approach for Rainfall Forecasting Using Particle Swarm Optimization and Projection Pursuit Technology. International Journal of Computational Intelligence and Applications, 9, 87-104. https://doi.org/10.1142/S1469026810002793 |
[25] | Huang, C.L. and Wang, C.J. (2016) A GA-Based Feature Se-lection and Parameters Optimization for Support Vector Machines. Expert Systems with Applications, 31, 231-240. https://doi.org/10.1016/j.eswa.2005.09.024 |
[26] | Oliveira, A.L.I., Braga, P.L., Lima, R.M.F., et al. (2010) GA-Based Method for Feature Selection and Parameters Optimization for Machine Learning Regression Applied to Software Effort Estimation. Information and Software Technology, 52, 1155-1166. https://doi.org/10.1016/j.infsof.2010.05.009 |
[27] | Li, X., Wu, S., Li, X., et al. (2020)Particle Swarm Optimiza-tion-Support Vector Machine Model for Machinery Fault Diagnoses in High-Voltage Circuit Breakers. Chinese Journal of Mechanical Engineering, 33, 6.
https://doi.org/10.1186/s10033-019-0428-5 |
[28] | Yang, A., Li, W. and Yang, X. (2019) Short-Term Electricity Load Forecasting Based on Feature Selection and Least Squares Support Vector Machines. Knowledge-Based Systems, 163, 159-173.
https://doi.org/10.1016/j.knosys.2018.08.027 |
[29] | Poli, R., Kennedy, J. and Blackwell, T. (2007) Particle Swarm Optimization. Swarm Intelligence, 1, 33-57.
https://doi.org/10.1007/s11721-007-0002-0 |
[30] | Rini, D.P., Shamsuddin, S.M. and Yuhaniz, S.S. (2011) Particle Swarm Optimization: Technique, System and Challenges. International Journal of Computer Applications, 14, 19-26. https://doi.org/10.5120/1810-2331 |
[31] | Dowsland, K.A. and Thompson, J. (2012) Simulated Annealing. In: Handbook of Natural Computing, Wiley, New York, 1623-1655. https://doi.org/10.1007/978-3-540-92910-9_49 |
[32] | Van, Laarhoven, P.J.M. and Aarts, E.H.L. (1987) Simulated Annealing. In: Simulated Annealing: Theory and Applications, Springer, Dordrecht, 7-15. https://doi.org/10.1007/978-94-015-7744-1_2 |
[33] | Mafarja, M.M. and Mirjalili, S. (2017) Hybrid Whale Optimization Algorithm with Simulated Annealing for Feature Selection. Neurocomputing, 260, 302-312. https://doi.org/10.1016/j.neucom.2017.04.053 |
[34] | Assad, A. and Deep, K. (2018) A Hybrid Harmony Search and Simulated Annealing Algorithm for Continuous Optimization. Information Sciences, 450, 246-266. https://doi.org/10.1016/j.ins.2018.03.042 |