全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于协同进化算法的支持向量回归径流建模研究与应用
Evolving Support Vector Regression by Co-Evolution Algorithm for Runoff Forecasting Modeling Research and Application

DOI: 10.12677/CSA.2020.103053, PP. 505-520

Keywords: 粒子群优化,模拟退火算法,支持向量回归,核函数,径流模型
Particle Swarm Optimization
, Simulated Annealing Algorithm, Support Vector Regression, Kernel Function, Runoff Modeling

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对支持向量回归模型在实际应用中难以选择建模数据的特征、核函数类型、最优核函数参数以及支持向量的惩罚系数和不敏感损失函数的参数问题,本文提出利用粒子群算法混合模拟退火算法构造协同进化算法,自适应选择建模数据的特征、协同进化选择支持向量回归的核函数类型,匹配最优核函数的参数和模型参数,以此建立协同进化的支持向量回归柳江径流预测模型。本文通过混合模拟退火算法Metropolis接受准则和粒子群算法随机接受准则,结合粒子群算法的并行计算和模拟退火算法的干扰机制,减少在局部搜索点附近的震动偏离构造协同进化算法,自适应筛选支持向量回归模型建模数据的特征、协同进化选择核函数类型,最优匹配核函数参数和支持向量模型参数,建立柳江径流建模,实验结果表明,该方法能够快速有效地选择建模数据的特征、核函数类型、最优匹配核函数参数和支持向量模型参数,其泛化性能明显提升,拟合效果更好。该方法用于柳江径流预测,具有良好的建模效果和更高的预测精度。
Aiming at the difficulty of selecting the appropriate kernel function type, kernel function parame-ters, penalty coefficients of support vectors, and insensitive loss parameters in practical applica-tions of support vector model, in this paper, co-evolution algorithm is employed to simultaneously evolve selection the data features, the kernel type of support vector regression, the parameters of the kernel function and the model parameters, namely HPSOSA-SVR by hybrid the strengths of Particle Swarm Optimization (PSO) and Simulated Annealing (SA). In order to select the optimal support vector regression kernel function type, the optimal matching kernel function parameter and the support vector model parameter for runoff modelling, the co-evolution algorithm focuses on combining the advantages of PSO (fast calculation and easy mechanism) and SA (ability to jump away from local optimum solutions and converge to the global optimum solution) by combined the metropolis processes of SA into the movement mechanism and parallel processing of PSO. The HPSOSA algorithm has the capability of both fast calculation and searching in the direction of the global optimum solution, helping PSO jump out of local optima, avoiding into the local optimal solution early and leads to a good solution. Compared with HPSOSA, PSO and pure SVR, results show that the HPSOSA-SVR model can successfully identify the optimal type of kernel function and all the optimal values of the parameters of SVR with the lowest prediction error values in runoff forecasting, can significantly improve the runoff forecasting accuracy. Experimental results reveal that the predictions using the proposed approach are consistently better than those obtained using the other methods presented in this study in terms of the same measurements.

References

[1]  Kisi, O., Shiri, J. and Tombul, M. (2013) Modeling Rainfall-Runoff Process Using Soft Computing Techniques. Computers & Geosciences, 51, 108-117.
https://doi.org/10.1016/j.cageo.2012.07.001
[2]  Rezaie-Balf, M., Zahmatkesh, Z. and Kim, S. (2017) Soft Computing Techniques for Rainfall-Runoff Simulation: Local Non-Parametric Paradigm vs. Model Classification Methods. Water Resources Management, 31, 3843-3865.
https://doi.org/10.1007/s11269-017-1711-9
[3]  Kumar, D., Sarthi, P.P. and Ranjan, P. (2016) Rainfall-Runoff Modeling Using Computational Intelligence Techniques. International Conference on Advances in Computing, Com-munications and Informatics, Jaipur, 21-24 September 2016, 800-806.
https://doi.org/10.1109/ICACCI.2016.7732144
[4]  Wu, J.S. and Xie, Y.S. (2019) Hybrid Support Vector Re-gression with Parallel Co-Evolution Algorithm Based on GA and PSO for Forecasting Monthly Rainfall. Journal of Software Engineering and Applications, 12, 524-539.
https://doi.org/10.4236/jsea.2019.1212032
[5]  Granata, F., Gargano, R. and De Marinis, G. (2016) Support Vector Regression for Rainfall-Runoff Modeling in Urban Drainage: A Comparison with The EPA’s Storm Water Management Mode. Water, 8, 69.
https://doi.org/10.3390/w8030069
[6]  Kan, G., Li, J., Zhang, X., et al. (2017) A New Hybrid Data-Driven Model for Event-Based Rainfall-Runoff Simulation. Neural Computing and Applications, 28, 2519-2534.
https://doi.org/10.1007/s00521-016-2200-4
[7]  Talei, A., Chua, L. H. and Quek, C. (2010) A Novel Application of a Neuro-Fuzzy Computational Technique in Event-Based Rainfall-Runoff Modeling. Expert Systems with Applica-tions, 37, 7456-7468.
https://doi.org/10.1016/j.eswa.2010.04.015
[8]  Wu, J.S., Jin, L. and Liu, M.Z. (2015) Evolving RBF Neural Networks for Rainfall Prediction Using Hybrid Particle Swarm Optimization and Genetic Algorithm. Neurocomputing, 148, 136-142.
https://doi.org/10.1016/j.neucom.2012.10.043
[9]  Wu, J.S. (2018) Co-Evolution Algorithm for Parameter Optimization of RBF Neural Networks for Rainfall-Runoff Forecasting. In: Huang, D.S., Bevilacqua, V., Premaratne, P. and Gupta, P., Eds., Intelligent Computing Theories and Application. ICIC, Lecture Notes in Computer Science, Springer, Cham, 195-206.
https://doi.org/10.1007/978-3-319-95930-6_19
[10]  Song, X., Kong, F., Zhan, C., et al. (2012) Hybrid Optimization Rainfall-Runoff Simulation Based on Xinanjiang Model and Artificial Neural Network. Journal of Hydrologic Engineering, 17, 1033-1041.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000548
[11]  Vapnik, V. (2013) The Nature of Statistical Learn-ing Theory. Springer Science & Business Media, Cham.
[12]  邓乃杨, 田英杰. 数据挖掘中的新方法-支持向量机[M]. 北京: 科学出版社, 2004.
[13]  朱波, 刘飞. 基于优化多核支持向量回归的制造过程均值偏移幅度估计[J]. 中国机械工程, 2014, 25(3): 630-635.
[14]  汪洪桥, 孙富春, 蔡艳宁, 等. 多核学习方法[J]. 自动化学报, 2010, 36(8): 1037-1050.
[15]  Salat, R. and Salat, K. (2010) New Approach to Predicting Proconvulsant Activity with the Use of Support Vector Regression. Computers in Biology and Medicine, 42, 575-581.
https://doi.org/10.1016/j.compbiomed.2012.02.001
[16]  Kaytez, F., Taplamacioglu, M.C., Cam, E., et al. (2015) Forecasting Electricity Consumption: A Comparison of Regression Analysis, Neural Networks and Least Squares Support Vector Machines. International Journal of Electrical Power & Energy Systems, 67, 431-438.
https://doi.org/10.1016/j.ijepes.2014.12.036
[17]  常群. 支持向量机的核方法及其模型选择[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2007.
[18]  罗林开. 支持向量机的核选择[D]: [博士学位论文]. 厦门: 厦门大学, 2007.
[19]  汪延华. 支持向量机模型选择研究[D]: [博士学位论文]. 北京: 北京交通大学, 2009.
[20]  廖杰, 王文圣, 李跃清, 等. 支持向量机及其在径流预测中的应用[J]. 四川大学学报(工程科学版), 2006, 38(6): 24-29.
[21]  López, F.J.M., Puertas, S.M. and Arriaza, J.A.T. (2014) Training of Support Vector Machine with the Use of Multivariate Normalization. Applied Soft Computing, 24, 1105-1111.
https://doi.org/10.1016/j.asoc.2014.08.020
[22]  Güraks?n, G.E., Hakl?, H. and U?uz, H. (2014) Support Vector Machines Classification Based on Particle Swarm Optimization for Bone Age Determination. Applied Soft Computing, 24, 597-602.
https://doi.org/10.1016/j.asoc.2014.08.007
[23]  Sheikhpour, R., Sarram, M.A. and Sheikhpour, R. (2016) Particle Swarm Optimization for Bandwidth Determination and Feature Selection of Kernel Density Estimation Based Classi-fiers in Diagnosis of Breast Cancer. Applied Soft Computing, 40, 113-131.
https://doi.org/10.1016/j.asoc.2015.10.005
[24]  Wu, J.S., Jin, L. and Liu, M. (2010) A Hybrid Support Vector Regression Approach for Rainfall Forecasting Using Particle Swarm Optimization and Projection Pursuit Technology. International Journal of Computational Intelligence and Applications, 9, 87-104.
https://doi.org/10.1142/S1469026810002793
[25]  Huang, C.L. and Wang, C.J. (2016) A GA-Based Feature Se-lection and Parameters Optimization for Support Vector Machines. Expert Systems with Applications, 31, 231-240.
https://doi.org/10.1016/j.eswa.2005.09.024
[26]  Oliveira, A.L.I., Braga, P.L., Lima, R.M.F., et al. (2010) GA-Based Method for Feature Selection and Parameters Optimization for Machine Learning Regression Applied to Software Effort Estimation. Information and Software Technology, 52, 1155-1166.
https://doi.org/10.1016/j.infsof.2010.05.009
[27]  Li, X., Wu, S., Li, X., et al. (2020)Particle Swarm Optimiza-tion-Support Vector Machine Model for Machinery Fault Diagnoses in High-Voltage Circuit Breakers. Chinese Journal of Mechanical Engineering, 33, 6.
https://doi.org/10.1186/s10033-019-0428-5
[28]  Yang, A., Li, W. and Yang, X. (2019) Short-Term Electricity Load Forecasting Based on Feature Selection and Least Squares Support Vector Machines. Knowledge-Based Systems, 163, 159-173.
https://doi.org/10.1016/j.knosys.2018.08.027
[29]  Poli, R., Kennedy, J. and Blackwell, T. (2007) Particle Swarm Optimization. Swarm Intelligence, 1, 33-57.
https://doi.org/10.1007/s11721-007-0002-0
[30]  Rini, D.P., Shamsuddin, S.M. and Yuhaniz, S.S. (2011) Particle Swarm Optimization: Technique, System and Challenges. International Journal of Computer Applications, 14, 19-26.
https://doi.org/10.5120/1810-2331
[31]  Dowsland, K.A. and Thompson, J. (2012) Simulated Annealing. In: Handbook of Natural Computing, Wiley, New York, 1623-1655.
https://doi.org/10.1007/978-3-540-92910-9_49
[32]  Van, Laarhoven, P.J.M. and Aarts, E.H.L. (1987) Simulated Annealing. In: Simulated Annealing: Theory and Applications, Springer, Dordrecht, 7-15.
https://doi.org/10.1007/978-94-015-7744-1_2
[33]  Mafarja, M.M. and Mirjalili, S. (2017) Hybrid Whale Optimization Algorithm with Simulated Annealing for Feature Selection. Neurocomputing, 260, 302-312.
https://doi.org/10.1016/j.neucom.2017.04.053
[34]  Assad, A. and Deep, K. (2018) A Hybrid Harmony Search and Simulated Annealing Algorithm for Continuous Optimization. Information Sciences, 450, 246-266.
https://doi.org/10.1016/j.ins.2018.03.042

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133