|
功能水凝胶材料避孕研究进展
|
Abstract:
人类正常性活动是提升经济发展水平和社会活动凝聚力的有力杠杆。人口需要控制,生殖科学和医学的进步使人们有可能操纵人类的生育。水凝胶具有很多优势,被用来作为避孕功能材料。用四层水凝?结构堵塞输精管和抑制精子活力,在男性避孕领域具有广阔的应用前景。
Normal sexual activity is a powerful lever to elevate the level of economic development and the cohesion of human social activities. Population needs to be controlled. Advances in reproductive science and medicine make it possible for people to manipulate human fertility. Hydrogel materials have many advantages and are used as contraceptive functional materials. The four-layer co-agulation structure was used to block the vas deferens and inhibit sperm activity. It has a broad application prospect in the field of male contraception.
[1] | Strulik, H. (2017) Contraception and Development: A Unified Growth Theory. Economics Department of the University of Pennsylvania and the Osaka University Institute of Social and Economic Research Association.
https://doi.org/10.1111/iere.12227 |
[2] | Jones, R.E. and Lopez, K.H. (2006) Human Reproductive Biology.
https://doi.org/10.1016/B978-0-08-050836-8.50011-1 |
[3] | 朱钦麟, 李英. 水凝胶在药物缓释中的应用[J]. 比较化学, 2018, 2(3): 109-113. |
[4] | 翟茂林, 哈鸿飞, 吉井文男, 幕内惠三. K型卡拉胶/聚乙烯吡咯烷酮共混水凝胶的辐射制备及性质研究[J]. 高等学校化学学报, 2001, 22(1): 139-142. |
[5] | 崔英德, 黎新明. PVP水凝胶的应用与制备研究进展[J]. 化工科技, 2002, 10(2): 43-47. |
[6] | 魏宏亮, 王连才, 张爱英, 朱凯强, 冯增国. 可注射水凝胶的制备与应用[J]. 化学进展, 2004, 16(6): 1008-1016. |
[7] | 易国斌, 杨少华, 康正, 郭建维, 崔亦华, 谭帼馨, 崔英德. 聚乙烯吡咯烷酮/壳聚糖共混水凝胶的制备与水的状态[J]. 化工学报, 2006, 57(11): 237-241. |
[8] | 汤玉峰, 杜予民. 壳聚糖基可注射型温度敏感性水凝胶[J]. 化学进展, 2008, 20(2): 239-244. |
[9] | Jha, P.K., Jha, R., Gupta, B.L. and Guha, S.K. (2010) Effect of g-Dose Rate and Total Dose Interrelation on the Polymeric Hydrogel: A Novel Injectable Male Contraceptive. Radiation Physics and Chemistry, 79, 663-671.
https://doi.org/10.1016/j.radphyschem.2009.11.010 |
[10] | Wu, D.-C., Loh, X.J., Wu, Y.-L., Lay, C.L. and Liu, Y. (2010) “Living” Controlled in Situ Gelling Systems: Thiol-Disulfide Exchange Method towards Tailor-Made Biode-gradable Hydrogels. Journal of the American Chemical Society, 132, 15140-15143. https://doi.org/10.1021/ja106639c |
[11] | Zhang, J., Yang, F., Shen, H. and Wu, D. (2012) Controlled Formation of Microgels/Nanogels from a Disulfide-Linked Core/Shell Hyperbranched Polymer. ACS Macro Letters, 1, 1295-1299. https://doi.org/10.1021/mz300489n |
[12] | Wang, X., Li, D., Yang, F., Shen, H., Li, Z. and Wu, D. (2013) Controlled Cross-Linking Strategy: From Hybrid Hydrogels to Nanoparticle Macroscopic Aggregates. Polymer Chemistry, 4, 4596-4600.
https://doi.org/10.1039/c3py00811h |
[13] | Wang, L.L., Li, L., Wang, X., Huang, D., Yang, F., Shen, H., Li, Z. and Wu, D. (2016) UV-Triggered Thiol-Disulfide Exchange Reaction towards Tailored Biodegradable Hydrogels. Polymer Chemistry, 7, 1429-1438.
https://doi.org/10.1039/C5PY01925G |
[14] | Cheng, Y.L., He, C.L., Ren, K.X., Rong, Y., Xiao, C.S., Ding, J.X., Zhuang, X.L. and Chen, X.S. (2018) Injectable Enzymatically Cross-Linked Hydrogels with Light-Controlled Degra-dation Profile. Advanced Science News, 39, Article ID: 1800272. https://doi.org/10.1002/marc.201800272 |
[15] | Raman, R., Hua, T., Gwynne, D., Collins, J., Tamang, S., Zhou, J.L., Esfandiary, T., Soares, V., Pajovic, S., Hayward, A., Langer, R. and Traverso, G. (2020) Light-Degradable Hydrogels as Dynamic Triggers for Gastrointestinal Applications. Science Advances, 16, 65. https://doi.org/10.1126/sciadv.aay0065 |
[16] | Parada, G.A., Yuk, H., Liu, X.Y., Hsieh, A.J. and Zhao, X.H. (2017) Impermeable Robust Hydrogels via Hybrid Lamination. Advanced Healthcare Materials, 6, Article ID: 1700520. https://doi.org/10.1002/adhm.201700520 |
[17] | Li, W., Tang, J., Terry, R.N., Li, S., Brunie, A., Callahan, R.L., Noel, R.K., Rodríguez, C.A., Schwendeman, S.P. and Prausnitz, M.R. (2019) Long-Acting Reversible Contraception by Effervescent Microneedle Patch. Science Advances, 5, 8145. https://doi.org/10.1126/sciadv.aaw8145 |
[18] | Nie, L., Zou, P., Dong, J., Sun, M., Ding, P., Han, Y., Ji, C., Zhou, Q., Yuan, H. and Suo, J. (2019) Injectable Vaginal Hy-drogels as a Multi-Drug Carrier for Contraception. Applied Sciences, 9, 1638. https://doi.org/10.3390/app9081638 |
[19] | Waller, D., Bolick, D., Lissner, E., Premanandan, C. and Gamerman, G. (2016) Azoospermia in Rabbits Following an Intravas Injection of Vasalgel?. Basic and Clinical Andrology, 26, 6. |
[20] | Waller, D., Bolick, D., Lissner, E., Premanandan, C. and Gamerman, G. (2017) Reversibility of Vasalgel? Male Contraceptive in a Rabbit Model. Basic and Clinical Andrology, 27, 8. https://doi.org/10.1186/s12610-017-0051-1 |
[21] | Colagross-Schouten, A., Lemoy, M.-J., Keesler, R.I., Lissner, E. and VandeVoort, C.A. (2017) The Contraceptive Efficacy of Intravas Injection of Vasalgel? for Adult Male Rhesus Monkeys. Basic and Clinical Andrology, 27, 4.
https://doi.org/10.1186/s12610-017-0048-9 |
[22] | Bao, W., Xie, L., Zeng, X., Kang, H., Wen, S., Cui, B., Li, W., Qian, Y., Wu, J., Li, T., Deng, K., Xin, H. and Wang, X. (2019) A Cocktail-Inspired Male Birth Control Strategy with Physical/Chemical Dual Contraceptive Effects and Remote Self-Cleared Properties. ACS Nano, 13, 1003-1011. https://doi.org/10.1021/acsnano.8b06683 |