|
贝叶斯网络研究现状与发展趋势的文献计量分析
|
Abstract:
[1] | 曹杰. 贝叶斯网络结构学习与应用研究[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2017. |
[2] | 乔萨础拉, 努尔布力, 苏芮. 数据可视分析研究现状与发展趋势的图谱分析[J]. 现代电子技术, 2018, 41(14): 161-165+169. |
[3] | 陈悦, 陈超美, 刘则渊, 胡志刚, 王贤文. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253. |
[4] | Chaturvedi, I., Ragusa, E., Gastaldo, P., et al. (2017) Bayesian Network based Extreme Learning Machine for Subjectivity Detection. Journal of the Franklin Institute, 355, 1780-1797. https://doi.org/10.1016/j.jfranklin.2017.06.007 |
[5] | 崔佳旭, 杨博. 贝叶斯优化方法和应用综述[J]. 软件学报, 2018, 29(10): 3068-3090. |
[6] | Anton-Sanchez, L., Larra?aga, P., Benavides-Piccione, R., Fernaud, I., De Felipe, J. and Bielza, C. (2017) Three Dimensional Spatial Modeling of Spines along Dendritic Networks in Human Cortical Pyramidal Neurons. PLoS ONE, 12, e0180400. https://doi.org/10.1371/journal.pone.0180400 |
[7] | Zhang, J., Ahlbrand, B., Malik, A., et al. (2016) A Visual Analytics Framework for Microblog Data Analysis at Multiple Scales of Aggregation. Computer Graphics Forum, 35, 441-450. https://doi.org/10.1111/cgf.12920 |
[8] | Lau, C.L. and Smith, C.S. (2016) Bayesian Networks in Infectious Disease Eco-Epidemiology. Reviews on Environmental Health, 31, 173-177. https://doi.org/10.1515/reveh-2015-0052 |
[9] | Karimi, I. and Salahshoor, K. (2012) A New Fault Detection and Diagnosis Approach for a Distillation Column Based on a Combined PCA and ANFIS Scheme. 2012 24th Chinese Control and Decision Conference, Taiyuan, 23-25 May 2012, 3408-3413. https://doi.org/10.1109/CCDC.2012.6244542 |
[10] | Cai, B., Huang, L. and Xie, M. (2017) Bayesian Networks in Fault Diagnosis. IEEE Transactions on Industrial Informatics, 13, 2227-2240. https://doi.org/10.1109/TII.2017.2695583 |
[11] | 邱均平, 韩雷. 近十年来我国知识工程研究进展与趋势[J]. 情报科学, 2016, 34(6): 3-9. |
[12] | 耿杨, 邵苏杰, 郭少勇, 喻鹏. 基于可见损伤持续时间贝叶斯网络的视频QoE评估方法[J]. 通信学报, 2017, 38(6): 136-141. |
[13] | 李玉兰. 基于贝叶斯网络的列控车载设备故障诊断研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2016. |
[14] | 陈晓艳, 董朝轶. 动态贝叶斯网络结构搜索法辨识生物神经网络连接[J]. 生命科学研究, 2017, 21(6): 527-533. |
[15] | 王双成, 高瑞, 杜瑞杰. 具有超父结点时间序列贝叶斯网络集成回归模型[J]. 计算机学报, 2017, 40(12): 2748-2761. |
[16] | 赵建喆. 具有认知特性的贝叶斯网络结构学习方法研究[D]: [博士学位论文]. 沈阳: 东北大学, 2015. |