|
Finance 2020
具有违约边界的基于借贷人资产的贷款还款方式研究
|
Abstract:
研究在设定还款边界的条件下,还款强度依赖于借贷人资产的灵活的贷款还款方式。还款边界的设立可以防止出现由于定期还款额过少,导致还款期限过长的情况,平衡借贷双方利益。通过运用结构化方法的思想,对剩余贷款期望价值建立数学模型,并将其转换为偏微分方程的初边值问题,求解得到借贷人剩余贷款价值的解析表达式和期望还清贷款所需时间与其他参数之间的隐函数关系式。最后分析了各个参数对期望还清贷款时间的影响。
Aiming at the problem that the asset's fluctuation influences the borrower's repayment ability, a loan with a new and flexible repayment method is designed, which depends on the asset value of the borrower. In detail, the repayment due is the proportion of the present value of the borrower's asset. In order to avoid too little the repayment due and too long repayment period, a boundary for the repayment due is set up. This repayment method can reduce the loan default probability. But it causes the uncertainty of the pay off time. By establishing a mathematical model of the residual value of the loan, this repayment method with the boundary can be transformed into an initial-boundary value problem of a partial differential equation. The analytic expression of the residual loan value and the expected time to pay off the loan are calculated. Finally, numerical analyses are shown.
[1] | Menton, R.C. (1974) On Pricing of Corporate Debt: The Risk Structure of Interest Rates. Journal of Finance, No. 6, 449-470. https://doi.org/10.1111/j.1540-6261.1974.tb03058.x |
[2] | Fraser, et al. (1996) Commercial Banking: The Management of Risk. Wheat Publishing Company, New York. |
[3] | Altman, E.I. (2002) Oldies, Still Goodies: Valuation, Loss Reserves, and Pricing of Commercial Loans. The RMA Journal, 32, 24-31. |
[4] | 陈悦. 浅析贷款的还款方式[J]. 时代金融, 2015(5): 49-51. |
[5] | 韩慧丽, 刘心明, 等. 等额本息和等额本金个人按揭还款方式比较研究[J]. 甘肃金融, 2019(7): 51-54. |
[6] | 王顺, 廖喜生. 关于对等额本息和等额本金两种按揭还款方式的思考[J]. 市场论坛, 2004(7): 62-63. |
[7] | 梁进, 刘兆雅. 一种依赖借贷人资产的灵活还款方式的贷款的设计和研究[J]. 运筹与模糊学, 2020, 10(1). |
[8] | Friedman, A. (1982) Variational Principles and Free-boundary Problems. Wiley-Interscience Publication, New York. |
[9] | 姜礼尚, 徐承龙, 任学敏, 李少华. 金融衍生产品定价的数学模型与案例分析[M]. 北京: 高等教育出版社, 2008. |
[10] | 姜礼尚. 期权定价的数学模型与方法[M]. 北京: 高等教育出版社, 2007. |
[11] | 张振宇, 张立柱. 偏微分方程[M]. 上海: 复旦大学出版社, 2011. |
[12] | 杨秀云, 蒋园园, 段珍珍. KMV模型在我国商业银行信用风险管理中的适用性分析及实证检验[J]. 财经理论与实践, 2016, 37(1): 34-40. |