全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于单阶神经网络与特征融合方法的交通信号灯识别
Traffic Signal Recognition Based on Single-Order Neural Network and Feature Fusion Method

DOI: 10.12677/JISP.2020.92010, PP. 79-85

Keywords: 深度学习,卷积神经网络,交通信号灯识别,特征融合
Deep Learning
, Convolutional Neural Network, Traffic Light Recognition, Feature Fusion

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统交通信号灯识别方法存在小目标检测准确率低、遮挡或反射情况下无法识别等问题,本文提出一种基于卷积神经网络的交通信号灯识别方法。采用单阶神经网络模型作为分类器,将单摄像头拍摄的彩色图像经过预处理后作为神经网络的输入,自动提取特征,通过特征融合的方法得出识别结果。通过实验验证了该方法的可行性。
Aiming at the problems of traditional traffic signal recognition methods, such as small target detection with low accuracy and unrecognizability under occlusion or reflection, this paper proposes convolutional neural networks. A single-stage neural network model is used as a clas-sifier, and the color image captured by a single camera is used as the input of neural network after preprocessing. The features are automatically advanced in advance, and the recognition result is obtained by means of feature fusion. The feasibility of the method was verified by ex-periments.

References

[1]  和福建, 等. 国内外智能网联车汽车公共道路测试现状和发展趋势研究[J]. 中国汽车, 2018(12): 28-30.
[2]  孙学聪, 邓煜. 一种简单的基于图像处理交通信号灯识别算法[J]. 汽车实用技术, 2019(1): 44-45.
[3]  田谨, 应捷. 基于Gabor滤波和稀疏表示的信号灯类型识别[J]. 电子科技, 2018(9): 50-52.
[4]  潘卫国, 等. 基于Faster-RCNN的交通信号灯检测与识别[J]. 传感器与微系统, 2019(38): 147-149.
[5]  贾瑞明, 刘立强. 基于卷积神经网络的交通灯识别[J]. 北方工业大学学报, 2018(5): 30-38.
[6]  吴丽华. 谷歌Tensorflow框架在自动驾驶汽车车辆识别功能中的应用[J]. 智能网联汽车, 2018(20): 38-40.
[7]  李升波, 等. 深度神经网络的关键技术及其在自动驾驶领域的应用[J]. 汽车安全与节能学报, 2019(2): 119-145.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133