|
简单语义单元的语义修饰关系图模型及其求解
|
Abstract:
[1] | 陈谦. 基于神经网络的自然语言语义表征方法研究[D]: [博士学位论文].合肥: 中国科学技术大学, 2018. |
[2] | 彭敏, 杨绍雄, 朱佳晖. 基于双向LSTM语义强化的主题建模[J]. 中文信息学报, 2018, 32(4): 40-49. |
[3] | 贾玉祥, 许鸿飞, 昝红英. 基于神经网络的语义选择限制知识自动获取[J]. 中文信息学报, 2017, 31(1): 155-161. |
[4] | Mikolov, T., Chen, K., Corrado, G., et al. (2013) Efficient Estimation of Word Representations in Vector Space.
http://cn.bing.com/academic/profile?id=6b535fdb1fad7c57b8421d3a81b00af5&encoded=0&v=paper_preview&mkt=zh-cn |
[5] | Wan, S., Lan, Y., Guo, J., et al. (2016) A Deep Architecture for Semantic Matching with Multiple Positional Sentence Representations.
https://www.researchgate.net/publication/285271115_A_Deep_Architecture_for_Semantic _Matching_with_Multiple_Positional_Sentence_Representations |
[6] | Pennington, J., Socher, R. and Manning, C. (2014) Glove: Global Vectors for Word Representation. Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 25-29 October 2014, 1532-1543.
https://doi.org/10.3115/v1/D14-1162 |
[7] | 孟凡擎, 鹿文鹏, 张旭, 等. 基于HowNet的图模型词义消歧方法[J]. 齐鲁工业大学学报, 2018, 32(6): 69-76. |
[8] | 唐善成, 马付玉, 张镤月, 等. 采用Seq2Seq模型的非受限词义消歧方法[J]. 西北大学学报(自然科学版), 2019, 49(3): 351-355. |
[9] | 夏小强, 邵堃. 基于语义关系约束和词语关系信息的句向量研究[J]. 计算机应用研究, 2019, 36(7): 2023-2026. |
[10] | Liu, Y.T. and Sun, H. (2015) Word Sense Disambiguation for Chinese Based on Semantics Calculation. Mathematical Problems in Engineering, 2015, Article ID: 235096. https://doi.org/10.1155/2015/235096 |