全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

有序Bi2Te3纳米柱阵列结构及其热电性能研究
Ordered Nanopillar Array Structure and Enhanced Thermoelectric Property of Bi2Te3 Film

DOI: 10.12677/MS.2020.103017, PP. 135-141

Keywords: Bi2Te3,纳米柱阵列,有序结构,热电性能
Bi2Te3
, Nanopillar Array, Ordered Structure, Thermoelectric Property

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究发现有序纳米柱阵列结构能大幅提升热电材料的性能。在此,利用真空镀膜成功制备了有序纳米柱阵列结构Bi2Te3薄膜。利用电子衍射与扫描电镜等对材料的成分与结构进行了检测,并对材料的电导与Seebeck系数以及热导等性能进行了测试。结果表明它具有(0 1 5)晶面高度择优生长,ZT值在室温高达1.06。有序的晶面或界面对提高载流子迁移率有贡献,而这些大量的边界或界面以及晶界可以增加声子的散射,降低热导,从而大幅提升了材料的热电性能。因此,纳米柱阵列结构的引入是提升热电材料性能的十分有效途径。
In this paper, it is found that the ordered nanopillar array structure can greatly enhance the thermoelectric property of materials. The ordered Bi2Te3 nanopillar array was successfully achieved by vacuum coating. The composition and the microstructure of the films are studied by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy. The in-plane thermoelectric properties, i.e., electrical conductivity and Seebeck coefficient and thermal conductivity of the films were measured. It shows that a preferential (0 1 5) growth and ZT=1.06 are obtained at room temperature in the nanopillar array. The novel ordered lattice planes and interfaces can favorably influence the carrier mobility. Lots of interfaces and grain boundaries will block the transport of phonon, hence decreasing the thermal conductivity and increasing thermoelectric property. Introduction of such ordered nanopillar array structure into films is therefore a very promising approach.

References

[1]  Aseginolaza, U., Bianco, R., Monacelli, L., et al. (2019) Phonon Collapse and Second-Order Phase Transition in Thermoelectric SnSe. Physical Review Letters, 122, Article ID: 075901.
https://doi.org/10.1103/PhysRevLett.122.075901
[2]  Qin, B.C., Wang, D.Y., He, W.K., et al. (2019) Realizing High Thermoelectric Performance in p-Type SnSe through Crystal Structure Modification. Journal of the American Chemical Society, 141, 1141-1149.
https://doi.org/10.1021/jacs.8b12450
[3]  Zhao, L.D., Tan, G., Hao, S., et al. (2016) Ultrahigh Power Factor and Thermoelectric Performance in Hole-Doped Single-Crystal SnSe. Science, 351, 141-144.
https://doi.org/10.1126/science.aad3749
[4]  Cecchi, S., Dragoni, D., Kriegner, D., et al. (2019) Interplay between Structural and Thermoelectric Properties in Epitaxial Sb2+xTe3 Alloys. Advanced Functional Materials, 29, Article ID: 1805184.
https://doi.org/10.1002/adfm.201805184
[5]  Biswas, K., He, J., Blun, I.D., et al. (2012) High-Performance Bulk Thermoelectric with All-Hierarchical Architectures. Nature, 489, 414-418.
https://doi.org/10.1038/nature11439
[6]  Mu, X., Zhou, H.Y., He, D.Q., et al. (2017) Enhanced Electrical Properties of Stoichiometric Bi0.5Sb1.5Te3 Film with High-Crystallinity via Layer-by-Layer In-Situ Growth. Nano Energy, 33, 55-64.
https://doi.org/10.1016/j.nanoen.2017.01.013
[7]  Tan, M., Hao, Y.M., Deng, Y., et al. (2018) High Thermoelectric Properties of (Sb,Bi)2Te3 Nanowire Arrays by Tilt-Structure Engineering. Applied Surface Science, 443, 11-17.
https://doi.org/10.1016/j.apsusc.2018.02.193
[8]  Tan, M., Deng, Y. and Wang, Y. (2014) Ordered Structure and High Thermoelectric Properties of Bi2(Te,Se)3 Nanowire Array. Nano Energy, 3, 144-151.
https://doi.org/10.1016/j.nanoen.2013.07.009
[9]  Tan, M., Liu, W.D., Shi, X.L., et al. (2019) Anisotropy Control Induced Unique Anisotropic Thermoelectric Performance in n-Type Bi2Te2.7Se0.3 Thin Film. Small Methods, 3, Article ID: 190058.
https://doi.org/10.1002/smtd.201900582
[10]  Hicks, L.D. and Dresselhaus, M.S. (1993) Thermoelectric Figure of Merit of a One-Dimensional Conductor. Physical Review B, 47, Article ID: 16631.
https://doi.org/10.1103/PhysRevB.47.16631
[11]  Hamdou, B., Kimling, J., Dorn, A., et al. (2013) Thermoelectric Characterization of Bismuth Telluride Nanowires, Synthesized via Catalytic Growth and Post-Annealing. Advanced Materials, 25, 239-244.
https://doi.org/10.1002/adma.201202474
[12]  Venkatasubramanian, R., Siivola, E., Colpitts, T., et al. (2001) Thin-Film Thermoelectric Devices with High Room Temperature Figures of Merit. Nature, 413, 597-599.
https://doi.org/10.1038/35098012
[13]  Zhu, T., Hu, L., Zhao, X., et al. (2016) New Insights into Intrinsic Point Defects in V2VI3 Thermoelectric Materials. Advanced Science, 3, Article ID: 1600004.
https://doi.org/10.1002/advs.201600004
[14]  Tong, Y., Yi, F.J., Liu, L.S., et al. (2010) Molecular Dynamics Study of Mechanical Properties of Bismuth Telluride Nanofilm. Physica B, 405, 3190-3194.
https://doi.org/10.1016/j.physb.2010.04.038
[15]  Liu, D.M., Li, X.Z., Botti, S., et al. (2017) Anisotropic Layered Bi2Te3-In2Te3 Composites: Control of Interface Density for Tuning of Thermoelectric Properties. Scientific Reports, 7, Article No. 43611.
https://doi.org/10.1038/srep43611
[16]  Hyun, C.M., Choi, J.H., Lee, S.W., et al. (2019) Synthesis of Bi2Te3 Single Crystals with Lateral Size up to Tens of Micrometers by Vapor Transport and Its Potential for Thermoelectric Applications. Crystal Growth & Design, 19, 2024-2029.
https://doi.org/10.1021/acs.cgd.8b01931
[17]  Wang, R.Y., Feser, J.P., Lee, J.S., et al. (2008) Enhanced Thermopower in PbSe Nanocrystal Quantum Dot Superlattices. Nano Letters, 8, 2283-2288.
https://doi.org/10.1021/nl8009704
[18]  Martin, J., Wang, L., Chen, L., et al. (2009) Enhanced Seebeck Coefficient through Energy-Barrier Scattering in PbTe Nanocomposites. Physical Review B, 79, 115311-115316.
https://doi.org/10.1103/PhysRevB.79.115311
[19]  Ma, Y., Hao, Q., Poudel, B., et al. (2008) Enhanced Thermoelectric Figure-of-Merit in p-Type Nanostructured Bismuth Antimony Tellurium Alloys Made from Elemental Chunks. Nano Letters, 8, 2580-2584.
https://doi.org/10.1021/nl8009928
[20]  Kim, E.B., Dharmaiah, P. and Lee, K.H. (2019) Enhanced Thermoelectric Properties of Bi0.5Sb1.5Te3 Composites with In-Situ Formed Senarmontite Sb2O3 Nanophase. Journal of Alloys and Compounds, 777, 703-711.
https://doi.org/10.1016/j.jallcom.2018.10.408

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133