全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

紫草素与免疫微环境的研究进展
Research Progress in Immune Microenvironment of Shikonin

DOI: 10.12677/PI.2020.92010, PP. 64-70

Keywords: 紫草素,免疫微环境,免疫治疗
Shikonin
, Immune Microenvironment, Immunotherapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

紫草素是从紫草科植物中提取的一种具有抗肿瘤、抗病毒、抗炎、抗菌等多种生物活性的萘醌类化合物。近年来,其对于免疫性疾病和肿瘤免疫治疗的作用得到了广泛的关注和研究。本文以紫草素对T细胞,DC细胞和巨噬细胞等免疫细胞作用的研究进展进行综述,为紫草素及其衍生化合物的研究及利用提供参考。
Shikonin is a naphthoquinone compound extracted from comfrey, which has various biological activities of anti-tumor, antiviral, anti-inflammation and anti-bacteria. In recent years, its effect on immune diseases and tumor immunotherapy has received extensive attention and research. In this paper, the research progress of shikonin on T cells, DC cells, macrophages and other immune cells was reviewed to provide references for the research and utilization of shikonin and its derivatives.

References

[1]  Wang, F., Yao, X., Zhang, Y., et al. (2019) Synthesis, Biological Function and Evaluation of Shikonin in Cancer Therapy. Fitoterapia, 134, 329-339.
https://doi.org/10.1016/j.fitote.2019.03.005
[2]  Andújar, I., Ríos, J., Giner, R., et al. (2013) Pharmacological Properties of Shikonin: A Review of Literature since 2002. Planta Medica, 79, 1685-1697.
https://doi.org/10.1055/s-0033-1350934
[3]  Piao, J., Cui, Z., Furusawa, Y., et al. (2013) The Mo-lecular Mechanisms and Gene Expression Profiling for Shikonin-Induced Apoptotic and Necroptotic Cell Death in U937 Cells. Chemico-Biological Interactions, 205, 119-127.
https://doi.org/10.1016/j.cbi.2013.06.011
[4]  Lu, B., Gong, X., Wang, Z.Q., et al. (2017) Shikonin Induces Glioma Cell Necroptosis in Vitro by ROS Overproduction and Promoting RIP1/RIP3 Necrosome Formation. Acta Pharmaceutica Sinica, 38, 1543-1553.
https://doi.org/10.1038/aps.2017.112
[5]  Han, W., Li, L., Qiu, S., et al. (2007) Shikonin Circumvents Cancer Drug Resistance by Induction of a Necroptotic Death. Molecular Cancer Therapeutics, 6, 1641-1649.
https://doi.org/10.1158/1535-7163.MCT-06-0511
[6]  Zhang, Y., Han, H., Sun, L., et al. (2017) Antiviral Activity of Shikonin Ester Derivative PMM-034 against Enterovirus 71 in Vitro. Brazilian Journal of Medical and Biological Research, 50, e6586.
https://doi.org/10.1590/1414-431x20176586
[7]  Zhang, Y., Han, H., Qiu, H., et al. (2017) Antiviral Activity of a Synthesized Shikonin Ester against Influenza A (H1N1) Virus and Insights into Its Mechanism. Biomedicine & Pharmacotherapy, 93, 636-645.
https://doi.org/10.1016/j.biopha.2017.06.076
[8]  Chen, X., Yang, L., Zhang, N., et al. (2003) Shikonin, a Component of Chinese Herbal Medicine, Inhibits Chemokine Receptor Function and Suppresses Human Immunodeficiency Virus Type 1. Antimicrobial Agents and Chemotherapy, 47, 2810-2816.
https://doi.org/10.1128/AAC.47.9.2810-2816.2003
[9]  Lee, Y., Lee, D., Kim, Y., et al. (2015) The Mechanism Underlying the Antibacterial Activity of Shikonin against Methicillin-Resistant Staphylococcus aureus. Evidence-Based Complementary and Alternative Medicine, 2015, Article ID: 520578.
https://doi.org/10.1155/2015/520578
[10]  Issa, F., Schiopu, A. and Wood, K.J. (2010) Role of T Cells in Graft Rejection and Transplantation Tolerance. Journal Expert Review of Clinical Immunology, 6, 155-169.
https://doi.org/10.1586/eci.09.64
[11]  Zeng, Q., Qiu, F., Chen, Y., et al. (2019) Shikonin Prolongs Allograft Survival via Induction of CD4(+) FoxP3(+) Regulatory T Cells. Frontiers in Immunology, 10, 652.
https://doi.org/10.3389/fimmu.2019.00652
[12]  Dai, Q., Fang, J. and Zhang, F. (2009) Dual Role of Shikonin in Early and Late Stages of Collagen Type II Arthritis. Molecular Biology Reports, 36, 1597-1604.
https://doi.org/10.1007/s11033-008-9356-7
[13]  Lu, S.L., Dang, G.H., Deng, J.C., et al. (2020) Shikonin Attenuates Hyperhomocysteinemia-Induced CD4(+) T Cell Inflammatory Activation and Atherosclerosis in ApoE(-/-) Mice by Metabolic Suppression. Acta Pharmaceutica Sinica, 41, 47-55.
https://doi.org/10.1038/s41401-019-0308-7
[14]  Li, T., Yan, F., Wang, R., et al. (2013) Shikonin Suppresses Human T Lymphocyte Activation through Inhibition of IKK beta Activity and JNK Phosphorylation. Evidence-Based Complementary and Alternative Medicine, 2013, Article ID: 379536.
https://doi.org/10.1155/2013/379536
[15]  Wang, H., Tang, Y., Fang, Y., et al. (2019) Reprogramming Tumor Immune Microenvironment (TIME) and Metabolism via Biomimetic Targeting Codelivery of Shikonin/JQ1. Nano Letters, 19, 2935-2944.
https://doi.org/10.1021/acs.nanolett.9b00021
[16]  Yin, S., Efferth, T., Jian, F., et al. (2016) Immunogenicity of Mammary Tumor Cells Can Be Induced by Shikonin via Direct Binding-Interference with hnRNPA1. Oncotarget, 7, 43629-43653.
https://doi.org/10.18632/oncotarget.9660
[17]  Lin, T.J., Lin, H.T., Chang, W.T., et al. (2015) Shikonin-Enhanced Cell Immunogenicity of Tumor Vaccine Is Mediated by the Differential Effects of DAMP Components. Molecular Cancer, 14, 174.
https://doi.org/10.1186/s12943-015-0435-9
[18]  Chen, H.M., Wang, P.H., Chen, S.S., et al. (2012) Shikonin In-duces Immunogenic Cell Death in Tumor Cells and Enhances Dendritic Cell-Based Cancer Vaccine. Cancer Immu-nology, Immunotherapy, 61, 1989-2002.
https://doi.org/10.1007/s00262-012-1258-9
[19]  Constant, S.L., Brogdon, J.L., Piggott, D.A., et al. (2002) Resi-dent Lung Antigen-Presenting Cells Have the Capacity to Promote Th2 T Cell Differentiation in Situ. The Journal of Clinical Investigation, 110, 1441-1448.
https://doi.org/10.1172/JCI0216109
[20]  Lee, C.C., Wang, C.N., Lai, Y.T., et al. (2010) Shikonin Inhibits Maturation of Bone Marrow-Derived Dendritic Cells and Suppresses Allergic Airway Inflammation in a Murine Model of Asthma. British Journal of Pharmacology, 161, 1496-1511.
https://doi.org/10.1111/j.1476-5381.2010.00972.x
[21]  Chiu, S.C., Tsao, S.W., Hwang, P.I., et al. (2010) Differential Functional Genomic Effects of Anti-Inflammatory Phytocompounds on Immune Signaling. BMC Genomics, 11, Article No. 513.
https://doi.org/10.1186/1471-2164-11-513
[22]  Cheng, Y.W., Chang, C.Y., Lin, K.L., et al. (2008) Shikonin Derivatives Inhibited LPS-Induced NOS in RAW 264.7 Cells via Down-Regulation of MAPK/NF-kappaB Signaling. Journal of Ethnopharmacology, 120, 264-271.
https://doi.org/10.1016/j.jep.2008.09.002
[23]  Lu, L., Qin, A., Huang, H., et al. (2011) Shikonin Extracted from Medicinal Chinese Herbs Exerts Anti-Inflammatory Effect via Proteasome Inhibition. European Journal of Pharma-cology, 658, 242-247.
https://doi.org/10.1016/j.ejphar.2011.02.043
[24]  Yoshida, L.S., Kawada, T., Irie, K., et al. (2010) Shikonin Di-rectly Inhibits Nitric Oxide Synthases: Possible Targets That Affect Thoracic Aorta Relaxation Response and Nitric Oxide Release from RAW 264.7 Macrophages. Journal of Pharmacological Sciences, 112, 343-351.
https://doi.org/10.1254/jphs.09340FP
[25]  Andújar, I., Ríos, J.L., Giner, R.M., et al. (2012) Beneficial Effect of Shikonin on Experimental Colitis Induced by Dextran Sulfate Sodium in BALB/c Mice. Evidence-Based Complemen-tary and Alternative Medicine, 2012, Article ID: 271606.
https://doi.org/10.1155/2012/271606
[26]  Wang, X.Q., Yu, J., Luo, X.Z., et al. (2010) The High Level of RANTES in the Ectopic Milieu Recruits Macrophages and Induces Their Tolerance in Progression of Endometriosis. Journal of Molecular Endocrinology, 45, 291-299.
https://doi.org/10.1677/JME-09-0177
[27]  Yuan, D.P., Gu, L., Long, J., et al. (2014) Shikonin Reduces Endometriosis by Inhibiting RANTES Secretion and Mononuclear Macrophage Chemotaxis. Experimental and Therapeutic Medicine, 7, 685-690.
https://doi.org/10.3892/etm.2013.1458
[28]  Li, Y., Lu, H., Gu, Y., et al. (2017) Enhancement of NK Cells Proliferation and Function by Shikonin. Immunopharmacology and Immunotoxicology, 39, 124-130.
https://doi.org/10.1080/08923973.2017.1299174
[29]  Su, L., Yan, G.Z., et al. (2012) Shikonin Derivatives Pro-tect Immune Organs from Damage and Promote Immune Responses in Vivo in Tumour-Bearing Mice. Phytotherapy Research, 26, 26-33.
https://doi.org/10.1002/ptr.3503
[30]  Chen, X., Yang, L., Oppenheim, J.J., et al. (2002) Cellular Pharmacology Studies of Shikonin Derivatives. Phytotherapy Research, 16, 199-209.
https://doi.org/10.1002/ptr.1100
[31]  Papageorgiou, V.P., Assimopoulou, A.N., Couladouros, E.A., et al. (1999) The Chemistry and Biology of Alkannin, Shikonin, and Related Naphthazarin Natural Products. Angewandte Chemie, 38, 270-301.
https://doi.org/10.1002/(SICI)1521-3773(19990201)38:3<270::AID-ANIE270>3.0.CO;2-0
[32]  Krawczyk, C.M., Holowka, T., Sun, J., et al. (2010) Toll-Like Receptor-Induced Changes in Glycolytic Metabolism Regulate Dendritic Cell Activation. Blood, 115, 4742-4749.
https://doi.org/10.1182/blood-2009-10-249540
[33]  Galván-Pe?a, S. and O’neill, L.A. (2014) Metabolic Reprograming in Macrophage Polarization. Frontiers in Immunology, 5, 420.
https://doi.org/10.3389/fimmu.2014.00420
[34]  Li, W., Liu, J., Jackson, K., et al. (2014) Sensitizing the Thera-peutic Efficacy of Taxol with Shikonin in Human Breast Cancer Cells. PLoS ONE, 9, e94079.
https://doi.org/10.1371/journal.pone.0094079
[35]  Kunisawa, J., Sugiura, Y., Wake, T., et al. (2015) Mode of Bioenergetic Metabolism during B Cell Differentiation in the Intestine Determines the Distinct Requirement for Vita-min B1. Cell Reports, 13, 122-131.
https://doi.org/10.1016/j.celrep.2015.08.063
[36]  Chen, J., Xie, J., Jiang, Z., et al. (2011) Shikonin and Its Ana-logs Inhibit Cancer Cell Glycolysis by Targeting Tumor Pyruvate Kinase-M2. Oncogene, 30, 4297-4306.
https://doi.org/10.1038/onc.2011.137
[37]  Wang, Y., Zhou, Y., Jia, G., et al. (2014) Shikonin Suppresses Tumor Growth and Synergizes with Gemcitabine in a Pancreatic Cancer Xenograft Model: Involvement of NF-κB Signaling Pathway. Biochemical Pharmacology, 88, 322-333.
https://doi.org/10.1016/j.bcp.2014.01.041
[38]  Wang, H., Tang, Y., Fang, Y., et al. (2019) Reprogramming Tumor Immune Microenvironment (TIME) and Metabolism via Bi-omimetic Targeting Codelivery of Shikonin/JQ1. Nano Letters, 19, 2935-2944.
https://doi.org/10.1021/acs.nanolett.9b00021
[39]  Shilnikova, K., Piao, M.J., Kang, K.A., et al. (2018) Shikonin Induces Mitochondria-Mediated Apoptosis and Attenuates Epithelial-Mesenchymal Transition in Cisplatin-Resistant Human Ovarian Cancer Cells. Oncology Letters, 15, 5417-5424.
https://doi.org/10.3892/ol.2018.8065
[40]  Ni, F., Huang, X., Chen, Z., et al. (2018) Shikonin Exerts Antitumor Activity in Burkitt’s Lymphoma by Inhibiting C-MYC and PI3K/AKT/mTOR Pathway and Acts Synergistically with Doxorubicin. Scientific Reports, 8, Article No. 3317.
https://doi.org/10.1038/s41598-018-21570-z
[41]  Li, Y.L., Hu, X., Li, Q.Y., et al. (2018) Shikonin Sensitizes Wild-Type EGFR NSCLC Cells to Erlotinib and Gefitinib Therapy. Molecular Medicine Reports, 18, 3882-3890.
https://doi.org/10.3892/mmr.2018.9347

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133