全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

内源性胰腺β细胞再生的研究进展
Research Progress of Endogenous Pancreatic β Cell Regeneration

DOI: 10.12677/PI.2020.92008, PP. 53-56

Keywords: 糖尿病,细胞增殖,转录因子,潜在药物,胰岛β细胞
Diabetes
, Cell Proliferation, Transcription Factors, Potential Drugs, Islet Beta Cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

糖尿病是一种进行性的代谢性疾病,其主要特征是血糖持续升高。目前认为内源性胰腺β细胞再生是治疗糖尿病的一种潜在策略。β细胞再生主要是指机体内残存的β细胞增殖或将其他类型细胞转分化为β细胞两个方面。因此,本文将以内源性β细胞再生的最新研究进展进行综述,为糖尿病的治疗提供新的治疗手段。
Diabetes is a kind of progressive metabolic disease, which is characterized by the continuous in-crease of blood glucose. Endogenous pancreatic β-cell regeneration is currently considered a potential strategy for the treatment of diabetes. Beta cell regeneration mainly refers to two aspects: the proliferation of beta cells remaining in the body or the transdifferentiation of other types of cells into beta cells. Therefore, this article will review the latest research progress of endogenous β-cell regeneration, and provide new treatments for the treatment of diabetes.

References

[1]  Nidheesh, D., Abhay, S., Neha, P., et al. (2015) Swertisin an Anti-Diabetic Compound Facilitate Islet Neogenesis from Pancreatic Stem/Progenitor Cells via p-38 MAP Kinase-SMAD Pathway:An In-Vitro and In-Vivo Study. PLoS ONE, 10, e0128244.
https://doi.org/10.1371/journal.pone.0128244
[2]  Zhou, Q. and Melton, D.A. (2018) Pancreas Regeneration. Nature, 557, 351-358.
https://doi.org/10.1038/s41586-018-0088-0
[3]  Cano, D.A., Rulifson, I.C., Heiser, P.W., et al. (2008) Regulated Beta-Cell Regeneration in the Adult Mouse Pancreas. Diabetes, 57, 958-966.
https://doi.org/10.2337/db07-0913
[4]  Dor, Y., Brown, J., Martinez, O.I. and Melton, D.A. (2004) Adult Pancreatic Beta-Cells Are Formed by Self-Duplication Rather than Stem-Cell Differentiation. Nature, 429, 41-46.
https://doi.org/10.1038/nature02520
[5]  Walpita, D., Hasaka, T., Spoonamore, J., et al. (2011) A Human Islet Cell Culture System for High-Throughput Screening. Journal of Biomolecular Screening, 17, 509.
https://doi.org/10.1177/1087057111430253
[6]  Wang, P., Alvarez-Perez, J.C., Felsenfeld, D.P., et al. (2015) A High-Throughput Chemical Screen Reveals that Harmine-Mediated Inhibition of DYRK1A Increases Human Pancre-atic Beta Cell Replication. Nature Medicine, 21, 383-388.
https://doi.org/10.1038/nm.3820
[7]  Dirice, E., Wal-pita, D., Vetere, A., et al. (2016) Inhibition of DYRK1A Stimulates Human Beta-Cell Proliferation. Diabetes, 65, 1660-1671.
https://doi.org/10.2337/db15-1127
[8]  Kondegowda, N., Fenutria, R., Pollack, I., et al. (2015) Os-teoprotegerin and Denosumab Stimulate Human Beta Cell Proliferation through Inhibition of the Receptor Activator of NF-κB Ligand Pathway. Cell Metabolism, 22, 77-85.
https://doi.org/10.1016/j.cmet.2015.05.021
[9]  Hang, Y. and Stein, R. (2011) MafA and MafB Activity in Pan-creatic β Cells. Trends in Endocrinology & Metabolism, 22, 364-373.
https://doi.org/10.1016/j.tem.2011.05.003
[10]  Romer, A.I. and Sussel, L. (2015) Pancreatic Islet Cell Develop-ment and Regeneration. Current Opinion in Endocrinology & Diabetes and Obesity, 22, 255-264.
https://doi.org/10.1097/MED.0000000000000174
[11]  Afelik, S., Chen, Y.L. and Pieler, T. (2006) Combined Ectopic Expression of Pdx1 and Ptf1a/p48 Results in the Stable Conversion of Posterior Endoderm into Endocrine and Exocrine Pancreatic Tissue. Genes & Development, 20, 1441-1446.
https://doi.org/10.1101/gad.378706
[12]  Oropez, D. and Horb, M. (2012) Transient Expression of Ngn3 in Xenopusendoderm Promotes Early and Ectopic Development of Pancreatic Beta and Delta Cells. Genesis, 50, 271-285.
https://doi.org/10.1002/dvg.20828
[13]  Gradwohl, G., Dierich, A., Lemeur, M., et al. (2000) Neurogenin3 Is Required for the Development of the Four Endocrine Cell Lineages of the Pancreas. Proceedings of the National Academy of Sciences, 97, 1607-1611.
https://doi.org/10.1073/pnas.97.4.1607
[14]  Jeon J., Correa-Medina, M., Ricordi, C., Edlund, H. and Diez, J.A. (2009) Endocrine Cell Clustering during Human Pancreas Development. Journal of Histochemistry and Cytochemistry, 57, 811-824.
https://doi.org/10.1369/jhc.2009.953307
[15]  Napolitano, T., Avolio, F., Courtney, M., et al. (2015) Pax4 Acts as a Key Player in Pancreas Development and Plasticity. Seminars in Cell & Developmental Biology, 44, 107-114.
https://doi.org/10.1016/j.semcdb.2015.08.013
[16]  Ben-Othman, N., Vieira, A., Courtney, M., et al. (2017) Long-Term GABA Administration Induces Alpha Cell-Mediated Beta-like Cell Neogenesis. Cell, 168, 73-85.
https://doi.org/10.1016/j.cell.2016.11.002
[17]  Weir, G.C. and Bonner-Weir, S. (2017) GABA Signaling Stimu-lates β Cell Regeneration in Diabetic Mice. Cell, 168, 7-9.
https://doi.org/10.1016/j.cell.2016.12.006
[18]  Li, J., Casteels, T., Frogne, T., et al. (2017) Artemisinins Target GABAA Receptor Signaling and Impair α Cell Identity. Cell, 168, 86-100.e15.
https://doi.org/10.1016/j.cell.2016.11.010
[19]  Talitha, V.D.M., Lee, S., Noordeloos, E., et al. (2017) Artemether Does Not Turn α Cells into β Cells. Cell Metabolism, 27, 218-225.e4.
https://doi.org/10.1016/j.cmet.2017.10.002
[20]  Cheng, C.W., Villani, V., Buono, R., et al. (2017) Fast-ing-Mimicking Diet Promotes Ngn3-Driven β-Cell Regeneration to Reverse Diabetes. Cell, 168, 775-788.e12.
https://doi.org/10.1016/j.cell.2017.01.040

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133