|
Finance 2020
损失厌恶下的多期多目标不确定投资组合模型及算法
|
Abstract:
金融市场具有复杂性和多态性,为了能够合理表达投资者所面临的主观不确定性,利用不确定变量刻画资产收益和风险的不确定特征,利用损失厌恶效用函数考虑投资者损失厌恶的心理,并同时考虑组合的流动性风险以及组合的多样性,构建损失厌恶下的多期多目标不确定投资组合模型。利用不确定理论,将不确定投资组合模型转换为确定型投资组合问题。由于所构建的投资组合模型是一个带约束的复杂非线性优化问题,传统的优化方法难以在有效的时间内得到模型的最优解。在已有的随机排序方法的基础上引入自适应机制,提出改进的粒子群算法。利用算例分析方法,检验改进粒子群算法的性能及投资组合模型在投资决策中的有效性。研究结果表明:改进的粒子群算法能够有效提高算法的求解精度,满足多期投资决策的要求;考虑损失厌恶下的多期多目标不确定投资组合模型能够反映不同投资者对投资目标的差异偏好。
Real stock market is complex and polymorphic. To express investor’s subjective uncertainty reasonably, uncertain variable is used to describe the return and risk characteristic of asset. Furthermore, based on prospect theory, the loss-averse utility function is employed to portray investor’s loss aversion. Additionally, a multi-period and multi-objective uncertain portfolio model under loss aversion is proposed, in which the liquidity risk and diversification degree are also introduced. The uncertain portfolio model is transformed into a certain portfolio model based on uncertainty theory. Since the portfolio model is a complex nonlinear programming problem for which the traditional optimization methods may fail to obtain the optimal solution. To solve the portfolio model, an improved particle swarm optimization (IPSO) is also proposed. In IPSO, a self-adaptive stochastic ranking approach is employed, which is able to balance the abilities of exploration and exploitation as well as to balance the objective function value and the constraint violation function value for the PSO algorithm. A numerical experiment is presented to examine the effectiveness of IPSO algorithm and the portfolio model. The results show that IPSO is effective to solve the proposed model and the proposed portfolio model can express investor’s preference by adjusting the objective weights.
[1] | Markowitz, H. (1952) Portfolio Selection. The Journal of Finance, 7, 77-91.
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x |
[2] | Black, F. and Litterman, R. (1992) Global Portfolio Optimization. Financial Analysts, 48, 28-43.
https://doi.org/10.2469/faj.v48.n5.28 |
[3] | 陈志英. 状态变化和学习行为下的最优资产组合选择[J]. 管理科学, 2013, 26(2): 81-89. |
[4] | 杨继平, 张春会. 基于马尔可夫状态转换模型的沪深股市波动率的估计[J]. 中国管理科学, 2013, 21(2): 42-49. |
[5] | 梁锡坤, 徐成贤, 郑冬. 鲁棒投资组合选择优化问题的研究进展[J]. 运筹学学报, 2014, 18(2): 87-95. |
[6] | 凌爱凡, 杨晓光, 唐乐. 具有多元权值约束的鲁棒LPM积极投资组合[J]. 管理科学学报, 2013, 16(8): 31-46. |
[7] | Nguyen, T., Gordon-Brown, L., Khosravi, A., Creighton, D. and Nahavandi, S. (2015) Fuzzy Portfolio Allocation Models through a New Risk Measure and Fuzzy Sharpe Ratio. IEEE Transactions on Fuzzy Systems, 23, 656-676.
https://doi.org/10.1109/TFUZZ.2014.2321614 |
[8] | 金秀, 刘家和, 苑莹. 摩擦市场下加权极大-极小随机模糊投资组合模型及实证[J]. 系统工程理论与实践, 2014, 34(7): 1662-1670. |
[9] | Liu, B. (2007) Uncertainty Theory. 2nd Edition, Springer-Verlag, Berlin, 9-104. |
[10] | Huang, X. and Qiao, L. (2012) A Risk Index Model for Multi-Period Uncertain Portfolio Selection. Information Sciences, 217, 108-116. https://doi.org/10.1016/j.ins.2012.06.017 |
[11] | Qin, Z. (2015) Mean-Variance Model for Portfolio Optimization Problem in the Simultaneous Presence of Random and Uncertain Returns. European Journal of Operational Research, 245, 480-488.
https://doi.org/10.1016/j.ejor.2015.03.017 |
[12] | 高广鑫, 樊志平. 考虑投资者后悔的一级密封拍卖的最优投标策略[J]. 管理科学, 2016, 29(1): 1-14. |
[13] | Barberis, N. and Thaler, R. (2003) A Survey of Behavioral Finance. In: Handbook of the Economics of Finance, Vol. 1, Elsevier, Amsterdam, 1053-1128. https://doi.org/10.1016/S1574-0102(03)01027-6 |
[14] | 李涛, 张文韬. 人格特征与股票投资[J]. 经济研究, 2016(6): 103-116. |
[15] | 姚京, 严珅, 李端. 基于电视游戏节目的香港居民风险决策分析[J]. 管理科学学报, 2013, 16(10): 1-10. |
[16] | Shefrin, H. and Statman, M. (2000) Behavioral Portfolio Theory. Journal of Financial and Quantitative Analysis, 35, 127-151. https://doi.org/10.2307/2676187 |
[17] | 张帮正, 魏宇, 余江, 李云红. 基于EVT-Vine-copula的多市场相关性及投资组合选择研究[J]. 管理科学, 2014, 27(3): 133-144. |
[18] | 刘勇军, 张卫国, 徐维军. 考虑现实约束的模糊多准则投资者优化模型[J]. 系统工程理论与实践, 2013, 33(10): 2462-2470. |
[19] | Gupta, P., Inuiguchi, M., Mehlawat, M.K. and Mittal, G. (2013) Multiobjective Credibilistic Portfolio Selection Model with Fuzzy Chance-Constraints. Information Sciences, 229, 1-17. https://doi.org/10.1016/j.ins.2012.12.011 |
[20] | Liu, B. (2015) Uncertainty Theory. 4th Edition, Springer-Verlag, Berlin, 9-103.
https://doi.org/10.1007/978-3-662-44354-5_2 |
[21] | Liu, B. (2010) Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty. Springer-Verlag, Berlin, 14-44. https://doi.org/10.1007/978-3-642-13959-8 |
[22] | Liu, Y.H. and Ha, M. (2010) Expected Value of Function of Uncertain Variables. Journal of Uncertain Systems, 4, 181-186. |
[23] | Yang, X. (2013) On Comonotonic Functions of Uncertain Variables. Fuzzy Optimization and Decision Making, 12, 89-98. https://doi.org/10.1007/s10700-012-9143-8 |
[24] | Fortin, I. and Hlouskova, J. (2011) Optimal Asset Allocation under Linear Loss Aversion. Journal of Banking & Finance, 35, 2974-2990. https://doi.org/10.1016/j.jbankfin.2011.03.023 |
[25] | Amihud, Y. (2002) Illiquidity and Stock Returns: Cross-Section and Time-Series Effects. Journal of Financial Markets, 5, 31-56. https://doi.org/10.1016/S1386-4181(01)00024-6 |
[26] | Yu, J.R., Lee, W.Y. and Chiou, W.J.P. (2014) Diversified Portfolios with Different Entropy Measures. Applied Mathematics and Computation, 241, 47-63. https://doi.org/10.1016/j.amc.2014.04.006 |
[27] | Yager, R.R. (1995) Measures of Entropy and Fuzziness Related to Aggregation Operators. Information Sciences, 82, 147-166. https://doi.org/10.1016/0020-0255(94)00030-F |
[28] | Hassanzadeh, F., Nemati, H. and Sun, M. (2014) Robust Optimization for Interactive Multiobjective Programming with Imprecise Information Applied to R&D Project Portfolio Selection. European Journal of Operational Research, 238, 41-53. https://doi.org/10.1016/j.ejor.2014.03.023 |
[29] | Kennedy, J. and Eberhart, R. (1995) Particle Swarm Optimization. Proceedings of the IEEE International Conference on Neural Networks, 4, 1942-1948. |
[30] | Liu, J., Jin, X., Wang, T. and Yuan, Y. (2015) Robust Multi-Period Portfolio Model Based on Prospect Theory and ALMV-PSO Algorithm. Expert Systems with Applications, 42, 7252-7262. https://doi.org/10.1016/j.eswa.2015.04.063 |