|
Material Sciences 2020
多巴胺诱导二硫化钼负载碳纳米纤维复合材料的制备及应用
|
Abstract:
本文通过静电纺丝和水热法制备了多巴胺诱导MoS2负载碳纳米纤维复合材料(MoS2@CNF),并用于锂电池的阳极。实验结果及分析结果表明,在MoS2@CNF中,互连的MoS2纳米片很好地垂直生长在碳纳米纤维上。多巴胺作为一种氮源以及粘合剂可以锚定和均匀分散MoS2纳米片,从而促进锂离子和电子在复合结构中的传输。用于锂电池阳极时,电化学性能测试结果显示:通过静电纺丝制备的碳纳米纤维可以提高复合材料的电导率,降低内阻。MoS2@CNF复合材料在0.1 A/g的电流密度下进行100次充放电循环后,其仍能保持826 mAh/g的容量,在1 A/g的电流密度下进行500次充放电循环后容量能稳定在524 mAh/g,体现出MoS2@CNF复合材料良好的电化学性能。
The dopamine-induced MoS2-supported carbon nanofiber composite (MoS2@CNF) was prepared by electrospinning and hydrothermal method and used in the anode of lithium battery. The experimental results and analysis results of MoS2@CNF show that the interconnected MoS2 nanosheets grow well on carbon nanofibers. Dopamine acts as a nitrogen source and binder to anchor and evenly disperse MoS2 nanosheets, especially promoting the transport of lithium ions and electrons in the composite structure. The electrochemical performance test results show that the carbon nanofiber prepared by electrospinning can improve the electrical conductivity of the composite and reduce the internal resistance when MoS2@CNF is used in lithium battery as anode. After 100 cycles of charge and discharge at a current density of 0.1 A/g, the MoS2@CNF composite can still maintain a capacity of 826 mAh/g. After a capacity of 500 charge and discharge cycles at a current density of 1 A/g, it can be stabilized at 524 mAh/g, which reflects the good electrochemical performance of MoS2@CNF composite.
[1] | Liu, H., Su, D., Wang, G. and Qiao, S. (2012) An Ordered Mesoporous WS2 Anode Material with Superior Electrochemical Performance for Lithium Ion Batteries. Journal of Materials Chemistry, 22, 17437-17440. https://doi.org/10.1039/c2jm33992g |
[2] | Xiao, J., Wang, X., Yang, X., Xun, S., Liu, G., Koech, P.K., Liu, J. and Lemmon, J.P. (2011) Electrochemically Induced High Capacity Displacement Reaction of PEO/MoS2/Graphene Nanocomposites with Lithium. Advanced Functional Materials, 21, 2840-2846. https://doi.org/10.1002/adfm.201002752 |
[3] | Ren, H., Gu, C., Zhao, J., Joo, S.W. and Huang, J. (2019) Co9S8@MoS2 Core-Shell Nanostructure Anchored on Reduced Graphene Oxide with Improved Electrochemical Performance for Lithium-Ion Batteries. Applied Surface Science, 473, 918-927. https://doi.org/10.1016/j.apsusc.2018.12.257 |
[4] | Lei, Z., Xu, L., Jiao, Y., Du, A., Zhang, Y. and Zhang, H. (2018) Strong Coupling of MoS2 Nanosheets and Nitrogen-Doped Graphene for High-Performance Pseudocapacitance Lithium Storage. Small, 14, 1704410. https://doi.org/10.1002/smll.201704410 |
[5] | Wang, R., Xu, C., Sun, J., Liu, Y., Gao, L., Yao, H. and Lin, C. (2014) Heat-Induced Formation of Porous and Free-Standing MoS2/GS Hybrid Electrodes for Binder-Free and Ultralong-Life Lithium Ion Batteries. Nano Energy, 8, 183-195. https://doi.org/10.1016/j.nanoen.2014.05.009 |
[6] | Wang, Z., Chen, T., Chen, W., Chang, K., Ma, L., Huang, G., Chen, D. and Lee, J.Y. (2013) CTAB-Assisted Synthesis of Single-Layer MoS2-Graphene Composites as Anode Materials of Li-ion batteries. Journal of Materials Chemistry A, 1, 2202-2210. https://doi.org/10.1039/C2TA00598K |