|
强迫耗散对偶极型阻塞的影响分析
|
Abstract:
本研究运用多尺度变换和摄动法简化具有耗散效应的正压准地转涡度方程,得到带有扰动项的非线性Shr?dinger方程,在此基础上,分析了非线性Shr?dinger孤立子的拓扑结构,并采用孤立子直接微扰理论研究强迫耗散对大气阻塞结构的作用。结果表明:1) 在没有耗散的情况下,当基本纬向速度和孤立子波幅满足不同的条件时,定常Shr?dinger孤立子具有两种形态,当基本纬向速度较小而孤立子波幅较大时,流场具有偶极子型的孤立波,表征低指数的经向环流;当基本纬向速度较大而孤立子波幅较小时,流场是退化的中心结构,表征高指数的纬向环流。2) 耗散效应对大气阻塞发展具有抑制作用,这种抑制作用随时间的负指数函数变化。
The nonlinear Shr?dinger equation with disturbance term is obtained, by simplifying the positive pressure quasi-geostrophic vorticity equation with dissipative effect through multi-scale trans-formation and perturbation method. On the base of this, topology of nonlinear Shr?dinger soliton is analyzed. And effect of forced dissipation on the blocking structure is studied by using the direct perturbation theory of solitons. The results show that: 1) Without dissipation, there exit two forms for the stationary Shr?dinger soliton: the flow field has a soliton-shaped solitary wave when the basic zonal velocity is small and the isolated wavelet amplitude is large enough, which represents a low-index circulation, as well as the flow field is a degenerate central structure when the basic zonal velocity is large and the isolated wavelet amplitude is small, which characterizes the low-index circulation. 2) The dissipative effect has an inhibitory effect on the development of obstruction, which inhibition changes with a negative exponential function of time.
[1] | 罗德海, 纪立人. 大气阻塞形成的一个理论[J]. 中国科学B辑, 1989, 19(1): 103-112. |
[2] | 罗德海, 马镜娴. 强迫耗散非线性系统的局域阻塞流型[J]. 大气科学, 1991, 15(3): 17-25. |
[3] | Malguzzi, P. and Rizzoli, M. (1985) Coherent Structures in A Baroclinic Atmosphere. Part II: A Truncated Model Approach. Journal of the Atmospheric Sciences, 41, 2620-2628. https://doi.org/10.1175/1520-0469(1984)041<2620:NSRWON>2.0.CO;2 |
[4] | Malguzzi, P. and Rizzoli, M. (1984) Nonlinear Stationary Rossby Waves on Nonuniform Zonal Winds and Atmospheric Blocking. Part I: The Analytical Theory. Journal of the Atmospheric Sciences, 41, 2620-2628. https://doi.org/10.1175/1520-0469(1984)041<2620:NSRWON>2.0.CO;2 |
[5] | Flierl, G.R. (1979) Baroclinic Solitary Waves with Radial Symmetry. Dynamics of Atmospheres and Oceans, 3, 15-38. https://doi.org/10.1016/0377-0265(79)90034-4 |
[6] | Flierl, G.R., Malanotte-Rizzoli, P. and Zabusky, N.L. (1987) Nonlinear Waves and Coherent Vortex Structures in Barotrople-Plane Jets. Journal of Physical Oceanography, 17, 1408-1438. https://doi.org/10.1175/1520-0485(1987)017<1408:NWACVS>2.0.CO;2 |
[7] | Mc Williams, J.C. and Flierl, G.R. (1979) On the Evolution of Isolated, Nonlinear Vortices. Journal of Physical Oceanography, 9, 1155-1182. https://doi.org/10.1175/1520-0485(1979)009<1155:OTEOIN>2.0.CO;2 |
[8] | Mc Williams, J.C., et al. (1981) Numerical Studies of BarotropicModons. Dynamics of Atmospheres and Oceans, 5, 219-238. https://doi.org/10.1016/0377-0265(81)90001-4 |
[9] | Yan, J.R., Ao, S.M. and Yu, H.Y. (2005) Direct Approach to Perturbation Theory for Bright Solitons. Chinese Physics, 14, 28-32. https://doi.org/10.1088/1009-1963/14/1/006 |
[10] | Yan, J.R. and Tang, Y. (1996) Direct Approach to the Study of Soloton Perturbations. Physical Review E, 54, 6816-6824. https://doi.org/10.1103/PhysRevE.54.6816 |
[11] | Yan, J.R., Tang, Y. and Zhou, G. (1998) Direct Approach to the Study of Soloton Perturbations of the Nonlinear Shr?dinger Equation and the Sine-Gordon Equation. Physical Review E, 58, 1064-1073. https://doi.org/10.1103/PhysRevE.58.1064 |
[12] | Liu, C., Li, Y.F. and Song, W. (2019) Variation in Dipole Blocking Associated with Arctic Warming in Winter: Potential Contributions to Cold and Extremely Cold Events over Eurasia. Atmosphere, 10, 249-268. https://doi.org/10.3390/atmos10050249 |
[13] | Cohen, J., Screen, J.A., Furtado, J.C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K., Entekhabi, D., Overland, J. and Jones, J. (2014) Recent Arctic Amplification and Extreme Mid-Latitude Weather. Nature Geoscience, 7, 627-637. https://doi.org/10.1038/ngeo2234 |
[14] | Ding, Q., Wallace, J.M., Battisti, D.S., et al. (2014) Tropical Forcing of the Recent Rapid Arctic Warming in Northeastern Canada and Greenland. Nature, 509, 209-212. https://doi.org/10.1038/nature13260 |
[15] | Ding, Q., Schweiger, A., L’Heureux, M., et al. (2017) Influence of High-Latitude Atmospheric Circulation Changes on Summertime Arctic Sea Ice. Nature Climate Change, 7, 289-295. https://doi.org/10.1038/nclimate3241 |
[16] | Francis, J.A., Chan, W., Leathers, D.J., et al. (2009) Winter Northern Hemisphere Weather Patterns Remember Summer Arctic Sea-Ice Extent. Geophysical Research Letters, 36, 157-163. https://doi.org/10.1029/2009GL037274 |
[17] | Francis, J.A. and Vavrus, S.J. (2012) Evidence Linking Arctic Amplification to Extreme Weather in Mid-Latitudes. Geophysical Research Letters, 39, L06801. https://doi.org/10.1029/2012GL051000 |
[18] | Overland, J.E. and Wang, M.Y. (2010) Large-Scale Atmospheric Circulation Changes Are Associated with the Recent Loss of Arctic Sea Ice. Tellus Series A-Dynamic Meteorology & Oceanography, 62, 1-9. https://doi.org/10.1111/j.1600-0870.2009.00421.x |
[19] | Overland, J., Francis, J.A., Hall, R., Hanna, E., Kim S.-J. and Vihma, T. (2015) The melting Arctic and mid-latitude Weather Patterns: Are they connected. Journal of Climate, 28, 7917-7932. https://doi.org/10.1175/JCLI-D-14-00822.1 |
[20] | Pedlosky, J. (1970) Finite-Amplitude Baroclinic Waves. Journal of the Atmospheric Sciences, 27, 15-31. https://doi.org/10.1175/1520-0469(1970)027<0015:FABW>2.0.CO;2 |
[21] | 朱抱真, 王斌. 有限振幅超长波的发展及对流层大气环流的指数循环[J]. 中国科学B辑, 1981(1): 73-84. |
[22] | 叶笃正, 巢纪平. 论大气运动的多时态特征—适应、发展和准定常演变[J]. 大气科学, 1998, 22(4): 385-398. |
[23] | 吕美仲, 侯志明, 周毅. 动力气象学[M]. 北京: 气象出版社, 2004: 137. |
[24] | Yu, H.Y. and Yan, J.R. (2004) Direct Approach to Study of Soliton Perturbations of Defocusing Nonlinear Schr?dinger Equation. Communications in Theoretical Physics, 42, 895-898. https://doi.org/10.1088/0253-6102/42/6/895 |
[25] | Yu, H.Y., Yan, J.R. and Xie, Q.T. (2004) The Stability of the Bright Soliton in Bose-Einstein Condensates. Chinese Physics Letters, 21, 1881-1887. https://doi.org/10.1088/0256-307X/21/10/004 |
[26] | 钟玉泉. 复变函数论[M]. 北京: 高等教育出版社, 2003. |