All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Separation of Molybdenum Isotopes at Supercritical Fluid Extraction with Carbon Dioxide in a Vertical Gradient Field of Temperatures

DOI: 10.4236/ojmetal.2020.101001, PP. 1-15

Keywords: Carbon Dioxide, Supercritical Fluids, Extraction, Molybdenum, Isotopes, Separation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Separation of molybdenum isotope complexes by supercritical fluid extraction (SFE) with carbon dioxide was studied experimentally. The extraction of molybdenum isotope complexes was carried out in the updated extraction chamber (reactor) of the SFE-U installation, which provided an initial pressure of P 20 MPa at constant temperatures of the upper T1 = 35°C and bottom T2 = 45°C flanges. The device, through which the eluent was discharged, involved a set of four thin tubes of different lengths located inside the reactor. The axes of the tubes and the reactor are parallel and the tubes are equally spaced circumferentially inside the reactor. The extract was removed from each tube through channels isolated from each other and located in the bottom flange with cylindrical expansion, in which several layers of filter paper were placed. After passing through the filters the extract entered a restrictor designed to remove the eluent from the reactor. The initial pressure of carbon dioxide and the holding time of the extract were specified in the experiments. The level of the eluent sampling was set by the lengths of the tubes depending on the reactor height. A method of producing molybdenum complexes was described. It was experimentally shown that at an initial pressure of 20 MPa and a given holding time a difference from the natural content of Mo isotopes for

References

[1]  Ma, B.M. (1987) Materialy yadernykh energeticheskikh ustanovok: Per. s angl. M.: Energoatomizdat, 408 s.
[2]  Obogashcheniye urana (1983) Pod red. S. Villani: Per. s angl. Pod red. I.K. Kikoina. M.: Energoatomizdat, 320 s.
[3]  Longeneker, D. (1987) Lazernoye obogashcheniye urana v SSHA. Atomnaya tekhnika za rubezhom, 3, 32-34.
[4]  Katz, J.J., Seaborg, G.T. and Morss, L.R. (1986) The Chemistry of Actinide Elements, Volume 1. 2nd Edition, Chapman and Hall, London, 525.
https://doi.org/10.1007/978-94-009-4077-2
[5]  Denniss, I. and Jeapes, A. (1996) In: The Nuclear Fuel Cycle: From Ore to Waste. Oxford University Press, Oxford, 7, 123.
[6]  Patton, F.S., Gudzhin, D.M. and Griffits, V.L. (1966) Yadernoye goryucheye na osnove obogashchennogo urana, Per. s ang. Pod red. N.P. Galkina, M. Atomizdat, 290 s.
[7]  Neklyudov, I.M., Azarenkov, N.A., Borts, B.V., Odeychuk, N.P., Skoromnaya, S.F. and Tkachenko, V.I. (2008) Sravneniye i analiz sushchestvuyushchikh metodov izvlecheniya urana i yego soyedineniy iz materialov atomnoy energetiki. NNTS, Khar’kov.
[8]  Zimmermann, R. (2007) Nuclear Medicine: Radioactivity for Diagnosis and Therapy. La Médecinenucléaire. La radioactivité au service du diagnostic et de la thérapie, EDP Sciences, Lez-Yulis, 173 p.
[9]  Krylov, V.V. (2012) Izotopy dlya yadernoy meditsiny. Sostoyaniye i perspektivy. Radiatsionnaya onkologiya i yadernaya meditsina, 1, 80-84.
[10]  http://dozor.kharkov.ua/news/nauka/1143752.html
[11]  Grinev, B.V. Gektin, A.V., Demin, A.V., Lyubinskiy, V.R. and Makeyev, S.S. (2005) Spetsializirovannaya dlya diagnostiki golovnogo mozga tomograficheskaya gamma kamera “OFEKT-3”. Nauka Ta ínnovatsíí, 2, 75-79.
[12]  Bekman, I.N. (2015) Radiokhimiya. V 2 t. T. 1. Fundamental’naya radiokhimiya: Uchebnik i praktikum dlya akademicheskogo bakalavriata, M.: Izdatel’stvo Yurayt, 473 s.
[13]  Guk, I.S., Kononenko, S.G. and Peyev, F.A. (2010) O vozmozhnosti proizvodstva diagnosticheskogo meditsinskogo izotopa tekhnetsiya 99M v Ukraine’ Vestnik Khar’ kovskogo universiteta, seriya fizicheskaya: “Yadra, chastichki, polya”, 916, 117-126.
[14]  Fedorenko, Z.P., Hulak, L.O., Mykhaylovych, Y.Y., Horokh, YE.L., Ryzhov, A.YU., Sumkina, O.V. and Kutsenko, L.B. (2019) Byuleten’ natsional’noho kantser-reyestru Ukrayiny. Kyiv, 20.
http://ncru.inf.ua/publications/BULL_20/index.htm
[15]  Goletskiy, N.D., Mashirov, L.G. and Zil’berman, B.Y.A. (2010) Ekstraktsiya molibdena rastvorami tributilfosfata iz peresyshchennykh azotnokislykh rastvorov. Radiokhimiya, 52, 155-161.
[16]  Borts, B., Palamarchuk, A., Tkachenko, V. and Skoromnaya, S. (2016) The Study of Supercritical Extraction of Complexes of Molybdenum with Carbon Dioxide. Eastern-European Journal of Enterprise Technologies, No. 84, 57-63.
https://doi.org/10.15587/1729-4061.2016.85112
[17]  Borts, B.V., Kazarinov, Y.G., Neklyudov, I.М., Ivanova, S.F. and Tkachenko, V.I. (2015) Prostranstvenno-neodnorodnoe raspredelenie izotopa uran-235 pri sverkhkriticheskoy flyuidnoy ekstraktsii dioksidom ugleroda v gradientnom pole temperatur. VANT, Ser. Materialovedenie i novye materialy, 4, 81-91.
[18]  Borts, B.V., Ivanova, S.F. and Tachenko, V.I. (2016) Model’ opisaniya ekstraktsii kompleksov izotopov uran-235 i uran-238 v podogrevaemom snizu sloe sverkhkriticheskogo dioksida ugleroda. VANT, Ser. Materialovedenie i novye materialy, 3, 50-60.
[19]  Borts, B.V., Bulavin, L.A., Skoromnaya, S.F. and Tkachenko, V.I. (2020) Supercritical Fluid Extraction of Molybdene Complexes and Its Isotopes with Carbon Dioxide. PAST, 5.
[20]  Muzgin, V.N., Yemel’yanova, H.H. and Pupyshev, A.A. (1998) Mass-spektrometriya s induktivno-svyazannoy plazmoy-novyy metod v analiticheskoy khimii. Analitika i kontrol’. 3-4. 3-25.
[21]  http://radiomaster.ru/cad/mc12/glava_13/index04.php

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133