全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On Solutions of Emden-Fowler Equation

DOI: 10.4236/ajcm.2020.101006, PP. 90-99

Keywords: Finite Element Method, Adomians Decomposition Algorithm, Numerical, Error

Full-Text   Cite this paper   Add to My Lib

Abstract:

Finite Element Method (FEM), based on p and h versions approach, and the Adomians decomposition algorithm (ADM) are introduced for solving the Emden-Fowler Equation. A number of special cases of p and h versions of FEM are introduced. Several iterated forms of the ADM are considered also. To demonstrate the efficiency of both methods, the numerical solutions of different examples are compared for both methods with the analytical solutions. It is observed that the results obtained by FEM are quite satisfactory and more accurate than ADM. Moreover, the FEM method is applicable for a wide range of classes including the singularity cases with the given special treatments by the FEM. Comparing the results with the existing true solutions shows that the FEM approach is highly accurate and converges rapidly.

References

[1]  James, S. and Wong, W. (1975) On the Generalized Emden-Fowler Equation Society for Industrial and Applied Mathematics. SIAM Review, 17, 339-360.
https://doi.org/10.1137/1017036
[2]  Adomians, G., Rach, R. and Shawagfeh, N.T. (1995) On the Analytic Solution of the Lane-Emden Equation. Physics Letters, 8, 161-181.
https://doi.org/10.1007/BF02187585
[3]  Metropolis, N. and Reitz, J.R. (1951) Solutions of the Fermi-Thomas-Dirac Equation. The Journal of Chemical Physics, 19, 555.
https://doi.org/10.1063/1.1748292
[4]  Adomians, G. (1990) A Review of the Decomposition Method and Some Recent Results for Nonlinear Equations. Mathematical and Computer Modelling, 13, 17-43.
https://doi.org/10.1016/0895-7177(90)90125-7
[5]  Evans, D.J. and Hossen, K.A. (2000) Asymptotic Decomposition of Mildly Nonlinear Differential Equation. International Journal of Computer Mathematics, 78, 569-573.
https://doi.org/10.1080/00207160108805132
[6]  Roberts, S.M. and Shipman, J.S. (1976) On the Closed form Solution of Troesch’s Problem. Journal of Computational Physics, 21, 291-304.
https://doi.org/10.1016/0021-9991(76)90026-7
[7]  Scott, M.R. (1975) On the Conversion of Boundary-Value Problems into Stable Initial-Value Problems via Several Invariant Imbedding Algorithms. In: Aziz, A.K., Ed., Numerical Solutions of Boundary-Value Problems for Ordinary Differential Equations, Academic Press, New York, 89-146.
https://doi.org/10.1016/B978-0-12-068660-5.50008-9
[8]  Khuri, S.A. (2003) A Numerical Algorithm for Solving the Troesch’s Problem. International Journal of Computer Mathematics, 80, 493-498.
https://doi.org/10.1080/0020716022000009228
[9]  Feng, X., Mei, L. and He, G. (2007) An Efficient Algorithm for Solving Troesch’s Problem. Applied Mathematics and Computation, 189, 500-507.
https://doi.org/10.1016/j.amc.2006.11.161
[10]  Chang, S.H. and Chang, I.L. (2008) A New Algorithm for Calculating the One-Dimensional Differential Transform of Nonlinear Functions. Applied Mathematics and Computation, 195, 799-808.
https://doi.org/10.1016/j.amc.2007.05.026
[11]  Chang, S.-H. (2010) A Variational Iteration Method for Solving Troesch’s Problem. Journal of Computational and Applied Mathematics, 234, 3043-3047.
https://doi.org/10.1016/j.cam.2010.04.018
[12]  Deeba, E.Y. and Khuri, S.A. (1996) A Decomposition Method for Solving the Nonlinear Klein-Gordon Equation. Journal of Computational Physics, 124, 442-448.
https://doi.org/10.1006/jcph.1996.0071
[13]  Adomians, G. (1986) Nonlinear Stochastic Operator Equations. Academic Press, New York.
https://doi.org/10.1016/B978-0-12-044375-8.50012-5
[14]  Hossen, K.A. (1984) Finite Element Solutions for Elliptic Partial Differential Equations. PhD Thesis, Loughborough University of Technology, Loughborough.
[15]  Hossein, J., Tayyebi, E., Sadeghi, S. and Khalique, C.M. (2014) New Modification of the Adomian Decomposition Method for Nonlinear Integral Equations. International Journal of Advances in Applied Mathematics and Mechanics, 1, 33-39.
[16]  Almazmumy, M., Hendi, F.A., Bakodah, H.O. and Alzumi, H. (2012) Recent Modifications of Adomian Decomposition Method for Initial Value Problem in Ordinary Differential Equations. American Journal of Computational Mathematics, 2, 228-234.
https://doi.org/10.4236/ajcm.2012.23030
[17]  Seng, V. and Abbaoui, K.Y. (1996) Adomians for Nonlinear Operators. Mathematical and Computer Modelling, 24, 59-65.
https://doi.org/10.1016/0895-7177(96)00080-5
[18]  Rosen, R. (1968) Matrix Bandwidth Minimization. Proceedings of 23rd National Conference, ACM, ACM Publication P-68, Brandon/Systems Press, Princeton, NJ, 585-595.
https://doi.org/10.1145/800186.810622
[19]  Cuthill, E. and McKee, J. (1969) Reducing the Bandwidth of Sparse Symmetric Matrices. Proceedings 24th National Conference of ACM, August 1969, 157-172.
https://doi.org/10.1145/800195.805928
[20]  Cheng, K.Y. (1973) Minimizing the Bandwidth of Sparse Symmetric Matrices. Computing, 11, 103-110.
[21]  Maplesoft User Case Studies.
http://www.maplesoft.com/company/casestudies
[22]  Granville, S. (1981) TWODEPEP. International Mathematical and Statistical Libraries. IMSL Statistical Libraries, Inc., Houston.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133