全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于主从控机车异步控制的重载列车操纵优化
Based on the Asynchronous Slave Control of Main and Slave Locomotive to the Operating Optimization of Heavy Haul Train

DOI: 10.12677/OJTT.2020.92007, PP. 50-58

Keywords: 重载列车,异步控制,电制动力,车钩力,优化
Heavy Haul Train
, Asynchronous Control, Electric Braking Force, Coupler Force, Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究两万吨列车在长大下坡道运行时缓解产生的较大车钩力问题,使用列车空气制动与纵向动力学联合仿真系统(TABLDSS),分析主、从控机车电制动力的异步控制对缓解时最大车钩力的影响,并提出一种利用主、从控机车的异步控制来减小最大车钩力的优化方案。选取某重载铁路的两段路,优化前后结果表明:第一段路列车的最大拉钩力降低8.2%;最大压钩力降低52.3%;第二段路列车的最大拉钩力降低12.1%,最大压钩力降低49.9%。说明缓解时增加主控机车的电制动力,减小从控机车的电制动力,可以减小列车所受到的最大拉钩力;出现最大拉钩力后10 s内降低主、从控机车电制动力可以减小列车所受到的最大压钩力。
To study the overlarge coupler force of the 20000-ton heavy haul train when it was releasing on a long steep ramp during the operational process, by using the Train Air Brake and Longitudinal Dynamics Simulation System (TABLDSS), when the train is releasing, the asynchronous control of main and slave locomotive is analyzed, and an optimum operation method is proposed. Two parts of a heavy haul line examples results show that the maximum tensile coupler forcer reduces by 8.2% and the maximum compressive coupler force reduces by 52.3% on the first heavy haul line and the maximum tensile coupler force reduces by 12.1% and the maximum compressive coupler force reduces by 49.9% on the second heavy haul line. It is proved that operation method of increasing the electric braking force of the main locomotive and reducing the electric braking force of the slave control locomotive can decrease the maximum tensile coupler force of the train and reducing the electric braking force of the main and slave locomotive can decrease the maximum compressive coupler force in 10 s after the maximum tensile coupler force occurs.

References

[1]  钱立新. 国际铁路重载运输发展概况[J]. 铁道运输与经济, 2002, 24(12): 55-56.
[2]  Belforte, P., Cheli, F., Diana, G. and Melze, S. (2008) Numerical and Experimental Approach for the Evaluation of Severe Longitudinal Dynamics of Heavy Freight Trains. International Journal of Vehicle Mechanics and Mobility, 46, 937-955.
https://doi.org/10.1080/00423110802037180
[3]  Cole, C. and Sun, Y.Q. (2006) Simulated Comparisons of Wagon Coupler Systems in Heavy Haul Trains. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail & Rapid Transit, 220, 247-256.
https://doi.org/10.1243/09544097JRRT35
[4]  C. Cole. 昆士兰和COALlink重载煤炭运输列车动力学仿真的比较[J]. 国外铁道车辆, 2003, 40(2): 33-39.
[5]  靳新元. 朔黄铁路2万t重载组合列车在长大下坡道车钩受力分析与应用[J]. 神华科技, 2018, 16(5): 78-82.
[6]  白建凌. 朔黄铁路2万t列车制动力判断与调整[J]. 科技资讯, 2019, 17(19): 59-61.
[7]  杨敏. 车钩间隙及制动操纵模式对万吨重载列车纵向动力学性能影响分析[D]: [硕士学位论文]. 成都: 西南交通大学, 2018.
[8]  董克毓, 魏伟. 万吨重载列车在神朔段长大下坡道循环制动优化[J]. 大连交通大学学报, 2017, 38(1): 17-20.
[9]  张帅, 魏伟. HXD1组合列车牵引与电制动模型的验证[J]. 铁道机车车辆, 2018, 38(5): 39-44.
[10]  耿志修, 李学峰, 张波. 大秦线重载列车运行仿真计算研究[J]. 中国铁道科学, 2008, 29(2): 88-93.
[11]  魏伟, 赵连刚. 两万吨列车纵向动力学性能预测[J]. 大连交通大学学报, 2009, 30(2): 39-43.
[12]  宋健, 魏伟. 重载列车纵向动力学仿真模型的有效性研究[J]. 大连交通大学学报, 2019, 40(3): 23-29.
[13]  杨兴光. 重载列车多工况仿真与试验比较研究[C]//中国铁路总公司机辆部、中国铁道学会. 2018年中国重载铁路技术交流会论文集(上册). 中国铁路总公司机辆部、中国铁道学会: 中国铁道学会, 2018: 8.
[14]  袁梓铭. 朔黄重载铁路运行阻力研究[D]: [硕士学位论文]. 大连: 大连交通大学, 2019.
[15]  Wu, Q., Spiryagin, M., Cole, C., et al. (2018) International Benchmarking of Lon-gitudinal Train Dynamics Simulators: Results. International Journal of Vehicle Mechanics and Mobility, 56, 343-365.
https://doi.org/10.1080/00423114.2017.1377840
[16]  温军刚. 朔黄铁路两万吨重载列车平稳操纵优化方案[J]. 中国高新科技, 2019(6): 58-60.
[17]  张曙光. HXD1型电力机车[M]. 北京: 中国铁道出版社, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133