The presence of heteroskedasticity in a considered regression model may bias the standard deviations of parameters obtained by the Ordinary Least Square (OLS) method. In this case, several hypothesis tests on the model under consideration may be biased, for example, CHOW’s coefficient stability test (or structural change test), Student’s t-test and Fisher’s F-test. Most of the heteroscedasticity tests in the literature are based on the comparison of variances. Despite the multiplication of equality tests of coefficients of variation (CVs) that have appeared in the literature, to our knowledge, the first and only use of the coefficient of variation in the detection of heteroskedasticity was offered by Li and Yao in 2017. Thus, this paper offers an approach to determine the existence of heteroskedasticity by a test of equality of coefficients of variation. We verify by a Monte Carlo robustness and performance test that our method seems even better than some tests in the literature. The results of this study contribute to the exploitation of the statistical measurement of CV dispersion. They help technicians economists to better verify their hypotheses before making a scientific decision when making a necessary forecast, in order to contribute effectively to the economic and sustainable development of a company or enterprise.
References
[1]
Bourbonnais, R. (2015) économétrie-Cours et exercices corrigés. Dunod 9è édition.
https://docplayer.fr/66598708-Econometrie-cours-et-exercices-corriges-regis-bourbonnais-9-e-edition.html
[2]
Leblond, S. (2003) Guide d’économétrie appliquée. Université de Montréal, Montréal. http://www2.cirano.qc.ca/~mccauslw/ECN3949/GuideEconometrie.pdf
[3]
Hamisultane, H. (2002) économétrie. Licence. France.
https://halshs.archives-ouvertes.fr/cel-01261163
[4]
Curto, J.D. and Pinto, J.C. (2009) The Coefficient of Variation Asymptotic Distribution in the Case of Non-IID Random Variables. Journal of Applied Statistics, 36, 21-32. https://doi.org/10.1080/02664760802382491
[5]
Pardo, M.C. and Pardo, J.A. (2000) Use of R\’{e}nyi Divergence to Test for the Equality of the Coefficients of Variation. Journal of Computational and Applied Mathematics, 116, 93-104. https://doi.org/10.1016/S0377-0427(99)00312-X
[6]
Gokpinar, G. and Esra, G. (2015) A Computational Approach for Testing Equality of Coefficients of Variation in k Normal Populations. Hacettepe Journal of Mathematics and Statistics, 44, 1197-1213. https://doi.org/10.15672/HJMS.2014317482
[7]
Krishnamoorthy, K. and Meesook, L. (2013) Improved Tests for the Equality of Normal Coefficients of Variation. In: Computational Statistics, Springer, New York.
https://doi.org/10.1007/s00180-013-0445-2
[8]
Shipra, B., Kibria, B.M.G. and Sharma, D. (2012) Testing the Population Coefficient of Variation. Journal of Modern Applied Statistical Methods, 11, 325-335.
http://digitalcommons.wayne.edu/jmasm/vol11/iss2/5
https://doi.org/10.22237/jmasm/1351742640
[9]
Zhaoyuan, L. and Jianfeng, Y. (2017) Testing for Heteroscedasticity in High-dimensional Regressions. Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong. https://arxiv.org/abs/1510.00097
https://doi.org/10.1016/j.ecosta.2018.01.001
[10]
Crépon, B. (2003) économétrie linéaire.
http://www.crest.fr/ckfinder/userfiles/files/Pageperso/crepon/poly20052006.pdf
[11]
Chekroun, A. (2017) Statistiques descriptives et exercices. Universiti Abou Bekr Belkaid Tlemcen-Algérie.
https://www.coursehero.com/file/27893347/chekroun-statistiquespdf/
[12]
Bertoneche, M. (1979) Existence d’hétéroscédasticité dans le modèle de marché appliqué aux bourses européennes de valeurs mobilières. Journal de la société statistique de Paris, tome 120, 270-276.
http://www.numdam.org/item/JSFS_1979__120_4_270_0
[13]
Gastwirth, J.L., Gel, Y.R. and Miao, W. (2009) The Impact of Levene’s Test of Equality of Variances on Statistical Theory and Practice. Statistical Science, 24, 343-360. https://doi.org/10.1214/09-STS301
[14]
Vessereau, A. (1974) Essais interlaboratoires pour l’estimation de la fidélité des méthodes d’essais. Revue de statistique appliquée, tome 22, 5-48.
http://www.numdam.org/item/RSA_1974__22_1_5_0/