|
环丙沙星–铜配合物的湿敏性质研究
|
Abstract:
近年来有机–无机杂化配位化合物作为湿敏传感器异军突起。常温下合成了环丙沙星–铜配合物(CIF-Cu),通过X射线单晶衍射对其进行了晶体结构表征,并对其湿敏性质进行了测试。结果表明,该晶体单元结构为[Cu(CIF)(H2O)3]SO4?2H2O,配合物为二维超分子网络,其具有大量裸露的可以与水分子形成氢键的-O-、-N-、-F-等活性位点,在中高湿条件下,阻抗随湿度变化曲线线性关系良好,响应时间仅为13 s,湿敏性能优异。该材料的开发为湿敏传感器的应用提供了良好的候选材料,同时为新型传感技术的研发开拓了新的方向。
In recent years, as humidity sensor, metal-organic coordination materials become more popular. Ciprofloxacin-copper coordination (CIF-Cu) was synthesized at room temperature. Its crystal structure was characterized by X-ray diffraction and its humidity sensitivity was tested. The results show that [Cu(CIF)(H2O)3]SO4?2H2O is a kind of 2D super-molecular. Under middle and high humidity, the linearity of impedance-relative humidity curve of CIF-Cu is good, and the response time is only 13 s. The development of this material provides a good candidate material for the ap-plication of humidity sensor, and opens up a new direction for the development of new sensing technology.
[1] | 陈青. 金属氧化物湿敏复合材料的制备及应用[D]: [硕士学位论文]. 北京: 北京化工大学, 2017. |
[2] | Fei, T., Dai, J., Jiang, K., Zhao, H. and Zhang, T. (2016) Stable Cross-Linked Amphiphilic Polymers from a One-Pot Reaction for Application in Humidity Sensors. Sensors and Actuators B: Chemical, 227, 649-654. https://doi.org/10.1016/j.snb.2016.01.038 |
[3] | 钱文浩, 李富盛, 黄玮, 丛玉凤. MOFs材料在传感器的应用[J]. 化学通报, 2019, 82(2): 99-107. |
[4] | 高柯玄, 庙荣荣, 何亮. 金属有机配合物的合成及其在催化领域中的应用研究进展[J]. 广东化工, 2018, 45(20): 81-83. |
[5] | Liu, J., Sun, F., Zhang, F., et al. (2011) In Situ Growth of Continuous Thin Metal-Organic Framework Film for Capacitive Humidity Sensing. Journal of Materials Chemistry, 21, 3775-3778. https://doi.org/10.1039/c0jm03123b |
[6] | Yin, Y.-Y., Xing, Y., Li, M.-W., et al. (2018) A 3D Pillared-Layer Cad-mium (II) Metal-Organic Framework for Chemiresistive Humidity Sensing with High Performance. Inorganic Chemistry Communi-cations, 97, 49-55. https://doi.org/10.1016/j.inoche.2018.09.014 |
[7] | Zhang, Y., Fu, B., Liu, K., et al. (2014) Humidity Sensing Properties of FeCl3-NH2-MIL-125(Ti) Composites. Sensors and Actuators B: Chemical, 201, 281-285. https://doi.org/10.1016/j.snb.2014.04.075 |
[8] | Zhang, J., Sun, L., Chen, C., et al. (2017) High Performance Humidity Sensor Based on Metal Organic Framework MIL-101(Cr) Nanoparticles. Journal of Alloys and Compounds, 695, 520-525.
https://doi.org/10.1016/j.jallcom.2016.11.129 |
[9] | Lv, X.J., Yao, M.S., Wang, G.E., Li, Y.-Z. and Xu, G. (2017) A New 3D Cupric Coordination Polymer as Chemiresistor Humidity Sensor: Narrow Hysteresis, High Sensitivity, Fast Response and Recovery. Science China Chemistry, 60, 1197-1204. https://doi.org/10.1007/s11426-017-9079-5 |
[10] | 程鑫, 张莹, 王广平, 等. 金属有机骨架材料ZIF-8(I2)的湿敏性能[J]. 中国科技论文, 2013, 8(4): 355-358. |
[11] | 张广学, 郝雁, 周明军, 等. 湿敏元件及湿度传感器常用的测量装置[J]. 中国科技信息, 2005(12): 62-63. |