全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

卫星降水在怒江流域的精度及径流模拟评估
Evaluation of Accuracy and Streamflow Simulation of Satellite Precipitation on Nu Basin

DOI: 10.12677/JWRR.2019.82015, PP. 125-135

Keywords: 降水数据,TRMM,CMORPH,精度评估,径流模拟
Precipitation
, TRMM, CMORPH, Accuracy Evaluation, Streamflow Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

高时空分辨率的卫星降水产品弥补了山区流域地面雨量站点布设密度低、空间结构不合理的局限性,在水文研究及应用上有很大的发展前景,但是其精度是制约其应用的瓶颈,也是研究的热点。本文以地面雨量站点观测降水数据为参照,评估不同尺度下常用三种降水产品TRMM 3b42 V7(简称TRMM)、TRMM 3b42RT V7(简称RT)以及CMORPH(简称CMO),在典型的少资料山区流域——怒江流域(云南段)的精度,并进一步评估了不同降水产品驱动水文模型(Hydro-Mount)模拟日径流的效果。研究表明:站点尺度上三种卫星降水产品与站点数据相关性较好,相关系数在0.65以上,降水正确预报率在0.71以上,但CMO存在超过40%的低估降水,TRMM存在0.42%的低估,RT存在9.37%的低估降水;流域尺度上卫星降水的精度明显优于点尺度上,精度趋势和站点尺度一致;TRMM数据和RT数据日径流模拟效果较好,纳西效率系数(NSE)指标上与雨量站点数据相当,但表现较雨量站点稳定,CMO数据日径流模拟效果较差,但在消除一定系统偏差后,也表现出一定的模拟精度。本研究为TRMM数据的精度订正提供相关思路,并分析了其在径流模拟应用中的可行性。本研究可为卫星降水数据的精度修正以及区域水文应用提供参考借鉴。
High temporal-spatial resolution satellite based precipitation products has been extensively used in ungauged or sparsely gauged areas to bridge the gap between the need for precipitation estimates and the scarcity in gauge observations. The accuracy of satellite precipitation products which restricts its application has become a focus. In this study, three satellite precipitation products (i.e., TRMM 3B42 V7 short for TRMM, TRMM 3B42 RT V7 short for RT, CMORPH short for CMO) were evaluated at different spatial scales via comparing with rain gauge precipitation observations in Nu River basin of Yunnan part, a typical mountainous area with sparse gauge observations. These four rain products were then adopted to drive the distributed hydrological model (Hydro-Mount) to simulate daily runoff. The results showed that under gauge scale, all three satellite precipitation products had a good correlation with rain gauge precipitation data with the correlation coefficient over 0.65 and probability of detection over 0.71 while on the amount of precipitation, CMO underestimated over 40%, and TRMM underestimated 0.42%, and RT underestimated 9.37%; it had similar but better accuracy results under watershed scale than it did at gauge scale. The TRMM-driven and RT-driven daily streamflow simulation performed litter better relative to gauge-driven streamflow with equivalent but more stable NSE values over the simulation period; the CMO-driven streamflow simulation had poor performance, but after eliminating certain system deviations, it also showed a certain simulation accuracy. The present study will hopefully be a reference for future accuracy correction and hydrological utilizations of satellite-based precipitation products.

References

[1]  SONG, J., XIA, J., ZHANG, L., et al. Streamflow prediction in ungauged basins by regressive regionalization: A case study in Huai River Basin, China. Hydrology Research, 2016, 47: 1053-1068.
https://doi.org/10.2166/nh.2015.155
[2]  WANG, S., HUANG, G. H., LIN, Q., et al. Comparison of interpolation methods for estimating spatial distribution of precipitation in Ontario, Canada. International Journal of Climatology, 2014, 14: 3745-3751.
https://doi.org/10.1002/joc.3941
[3]  PHILLIPS, D. L., DOLPH, J. and MARKS, D. A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain. Agricultural and Forest Meteorology, 1992, 58: 119-141.
https://doi.org/10.1016/0168-1923(92)90114-J
[4]  SCHAMM, K., ZIESE, M., BECKER, A., et al. Global gridded precipitation over land: A description of the new GPCC First Guess Daily product. Earth System Science Data, 2017, 6: 49-60.
https://doi.org/10.5194/essd-6-49-2014
[5]  HUFFMAN, G. J., ADLER, R. F., BOLVIN, D. T., et al. The TRMM multi-satellite precipitation analysis (TMPA). Journal of Hydrometeor, 2010, 8(1): 38.
https://doi.org/10.1007/978-90-481-2915-7_1
[6]  JOYCE, R. J., JANOWIAK, J. E., ARKIN, P. A., et al. A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 2004, 5: 487-503.
[7]  刘俊峰, 陈仁升, 韩春坛, 等. 多卫星遥感降雨数据精度评价[J]. 水科学进展, 2010, 21(3): 343-348. LIU Junfeng, CHEN Rensheng, HAN Chuntan, et al. Evaluating TRMM multi-satellite precipitation analysis using gauge precipitation and MODIS snow-cover products. Advances in Water Science, 2010, 21(3): 343-348. (in Chinese)
[8]  LIU, J., DUAN, Z., JIANG, J., et al. Evaluation of three satellite precipitation products TRMM 3B42, CMORPH, and PERSIANN over a subtropical watershed in China. Advances in Meteorology, 2015: 2731-2738.
https://doi.org/10.1155/2015/151239
[9]  KRAKAUER, N. Y., PRADHANANG, S. M., LAKHANKAR, T., et al. Evaluating satellite products for precipitation estimation in mountain regions: A case study for Nepal. Remote Sensing, 2013, 5: 4107-4123.
https://doi.org/10.3390/rs5084107
[10]  胡庆芳, 杨大文, 王银堂, 等. 赣江流域高分辨率卫星降水数据的精度特征与时空变化规律[J]. 中国科学: 技术科学, 2013, 43(4): 447. HU Qingfang, YANG Dawen, WANG Yintang, et al. Accuracy and spatio-temporal variation of high resolution satellite rainfall estimate over the Ganjiang River Basin. Science China Technological Sciences, 2013, 56: 853-865. (in Chinese)
[11]  胡庆芳, 杨大文, 王银堂, 等. 赣江流域TRMM 3B42V6的误差特征与成因解释[J]. 水科学进展, 2013, 24(6): 765-800. HU Qingfang, YANG Dawen, WANG Yintang, et al. Validation and error interpretation for daily TRMM 3B42V6 rainfall over the Ganjiang River basin in China. Advances in Water Science, 2013, 24(6): 1-9. (in Chinese)
[12]  王佳伶, 陈华, 许崇育, 李翔泉, 曾强. TRMM卫星降雨数据的精度及径流模拟评估[J]. 水资源研究, 2016, 5(5): 434-445. WANG Jialing ,CHEN Hua, XU Chongyu, et al. Evaluation of accuracy and streamflow simulation of TRMM satellite precipitation data. Journal of Water Resources Research, 2016, 5(5): 434-445. (in Chinese)
https://doi.org/10.12677/JWRR.2016.55050
[13]  Li, D., DING, X. and WU, J. Simulating the regional water balance through hydrological model based on TRMM satellite rainfall data. Hydrology and Earth System Sciences, 2015, 12: 2497-2525.
https://doi.org/10.5194/hessd-12-2497-2015
[14]  张鹏举, 江善虎, 陈宏新, 赵敏, 李敏娟. TRMM 卫星降水数据在淮河息县流域径流模拟的适用性[J]. 水资源研究, 2017, 6(2): 148-155. ZHANG Pengju, JIANG Shanhu, CHEN Hongxin, et al. Hydrological simulation capability of TRMM satellite precipitation data in xixian catchment, Huai River Basin. Journal of Water Resources Research, 2017, 6(2): 148-155. (in Chinese)
https://doi.org/10.12677/JWRR.2017.62018
[15]  杨传国, 余钟波, 林朝晖, 等. 基于TRMM卫星雷达降雨的流域陆面水文过程[J]. 水科学进展, 2009, 20(4): 461-466. YANG Chuanguo, YU Zhongbo, LIN Zhaohui, et al. Study on watershed hydrologic processes using TRMM satellite precipitation radar products. Advances in Water Science, 2009, 20(4): 461-466. (in Chinese)
[16]  COLLISCHONN, B., COLLISCHONN, W. and TUCCI, C. E. M. Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates. Journal of Hydrology, 2008, 360(1-4): 207-216.
https://doi.org/10.1016/j.jhydrol.2008.07.032
[17]  王蕾, 倪广恒, 胡和平. 沁河流域地表水与地下水转换的模拟[J]. 清华大学学报(自然科学版), 2006, 46(12): 1978-1981. WANG Lei, NI Guangheng and HU Heping. Simulation of interactions between surface water and groundwater in Qin River basin. Journal of Tsinghua University (Science and Technology), 2006, 46(12): 1978-1981. (in Chinese)
[18]  周星, 沈忱, 倪广恒, 胡宏昌. 结合退水曲线的数字滤波基流分割方法[J]. 清华大学学报(自然科学版), 2017, 57(3): 318-323, 330. ZHOU Xing, SHEN Chen, NI Guangheng, et al. Digital filter baseflow separation method based on a master recession curve. Journal of Tsinghua University (Science and Technology), 2017, 57(3): 318-323, 330. (in Chinese)
[19]  -Chen, F., Liu, Y., Liu, Q. and Li, X. Spatial downscaling of TRMM 3B43 precipitation considering spatial heterogeneity. International Journal of Remote Sensing, 2014, 35: 3074-3093.
https://doi.org/10.1080/01431161.2014.902550
[20]  陈杰, 许崇育, 郭生练, 陈华. 统计降尺度方法的研究进展与挑战[J]. 水资源研究, 2016, 5(4): 299-313. CHEN Jie, XU Chongyu, GUO Shenglian, et al. Progress and challenge in statistically downscaling climate model outputs. Journal of Water Resources Research, 2016, 5(4): 299-313. (in Chinese)
https://doi.org/10.12677/JWRR.2016.54037
[21]  ZHOU, X., NI, G.-H., SHEN, C, et al. Remapping annual precipitation in mountainous areas based on vegetation patterns: A case study in the Nu River basin. Hydrology & Earth System Sciences, 2017, 21: 999-1015.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133